

Table of Contents
Developer Portal . 2

BPM Editor . 3

Overview . 3

BPM design . 3

BPMN elements. 4

Parallel gateway (AND) . 5

Decision gateway (XOR) . 6

Design a BPM process . 8

Create a new BPM . 8

Connecting workflows and processes. 8

Execution flow control . 9

Execution breakpoint . 10

Execution tracking . 10

BPM instances management. 11

Getting Started Developing BPM . 11

Uses of BPMN . 11

Create or Edit a BPM. 13

The Helloworld BPM. 13

Workflow Editor . 16

Overview . 16

Workflow overview. 16

The lifecycle of a workflow. 17

How to persist the state of a workflow instance . 17

Editor Overview . 18

Workflow information . 18

Workflow variables. 18

Workflow processes . 19

Logging and troubleshooting . 22

Workflow Variables . 24

Overview . 24

Default settings . 25

Advanced settings . 35

Variable arrays. 36

Getting Started Developing Workflows in PHP. 36

Overview . 37

The "Helloworld" Workflow . 37

Getting Started Developing Workflows in Python . 42

Overview . 42

The "Hello world" Workflow. 42

Python SDK . 48

Overview . 48

Code samples . 48

Microservice functions. 49

How to create you libraries of functions . 52

How to extend the SDK. 53

Miscellaneous . 54

PHP SDK . 55

Overview . 56

Where to find the source code of the SDK?. 56

Code samples . 56

Microservice functions. 59

Useful functions . 60

Microservice Editor . 62

Microservice editor . 62

Overview . 62

Information. 63

Variables . 64

Functions . 65

Constraint . 69

XML Microservice Editor . 71

Overview . 71

JSON Microservice Editor. 73

Overview . 73

CLI Microservice Editor . 76

CLI microservice implementation. 77

Import function: tips and examples . 80

Microservice Variables . 81

Overview . 82

Default settings . 82

Advanced settings . 86

Variable arrays. 89

Microservice Template with PHP Smarty . 90

Smarty templates. 90

Parameter substitution in microservice . 90

Getting Started with Microservices Design . 100

Overview . 100

Lab setup . 100

Microservice design . 100

Going further . 105

Microservice Order Command REST API . 106

Type of Execution . 106

Executing Commands. 109

Microservice Order Stack Management API . 111

Overview . 111

API description. 112

Adapter Development . 117

Overview . 117

How to find, install, activate the adapters . 117

REST Generic adapter . 118

How to create a new vendor based on an existing adapter . 118

Overview . 118

How to do it. 118

Adapter SDK . 121

Custom commands . 121

Status polling . 122

Asset management . 122

Configuration management . 123

Connectivity to the Devices. 125

Implementation of ‘Update Configuration’ . 127

Managed entity activation (initial provisioning). 128

Configuration backup/restore . 128

Connectivity fallback mechanism . 128

Microservice implementation . 128

The MSactivator™ CoreEngine API . 129

Operation status feedback. 130

Import / Export Librairies . 131

Overview . 132

Local libraries repositories overview . 133

Configuration . 134

Prerequisites. 134

Add a repository . 134

How it works. 135

Git repository management rules . 137

REST API . 138

Enabling REST API support . 139

Authentication . 140

Format . 143

Example API commands . 144

User login . 144

Ping an IP address from the CoreEngine . 145

Call microservice functions . 145

Configuration variables . 146

Configuration . 146

Workflow. 147

Example: call the process "Create Instance" of the worklflow "Helloworld" 147

Dashboard design. 148

Overview . 149

Create a dashboard . 150

Create a visualization. 150

Create a dashboard . 151

Set the subtenant filter . 152

Save the dashboard . 152

Update the reference and name of the dashboard. 153

DevOps best practice guide . 155

How to install the microservices and the workflows . 156

Overview . 156

How to design/develop and contribute to the community . 157

Default installation for the libraries. 158

Standard libraries installation . 158

Adapters . 158

Microservices. 159

Workflows . 159

This documentation contains a set of tutorials and examples to help you get
familiar with the MSactivator™ as a development platform.

1

Developer Portal
The developer portal provides the tools to design, develop and test automated and integrated
processes.

Developer dashboard

After connecting to the developer portal you will see the 3 swimlanes for the automation and
integration provided by the MSactivator™.

You can either start creating new libraries or view and edit the existing ones.

2

BPM Editor

The BPM editor is a web based UI for designing BPM processes.

Overview
The MSactivator™ provides a web based user interface editor for designing BPM (Business Process
Model).

BPM are sitting at the top of the automation layer and the editor will allow you to create BPM in a
codeless way.

BPM design
To create a new BPM from the developer portal, click on "+ Create" from the swimlane "BPM
Library."

You can also browse through the existing BPM by clicking on "See more".

BPM library swimlane

3

 you need to select a sub-tenant to see the BPM.

BPMN elements
The MSactivator™ BPM engine supports the following BPMN elements:

indicates the beginning of the BPM process

indicates the end of the BPM process

an executable task that can run workflow processes

an exclusive decision gateway (XOR)

a parallel gateway (AND)

a user break point

4

Bear in mind that a gateway is not a task! You have to determine facts and needs
before reaching a gateway.

Parallel gateway (AND)

Gateways can also be used to model concurrency in a process.

The most straightforward gateway to introduce concurrency in a process model is the Parallel
Gateway, which allows forking into multiple paths of execution or joining multiple incoming paths
of execution.

Parallel gateway

The functionality of the parallel gateway is based on the incoming and outgoing sequence flow(s):

• fork: all outgoing sequence flows are followed in parallel, creating one concurrent execution for
each sequence flow.

• join: all concurrent executions arriving at the parallel gateway wait at the gateway until an
execution has arrived for each of the incoming sequence flows. Then the process continues past
the joining gateway.

Note that a parallel gateway does not need to be ‘balanced’ (i.e., a matching number of
incoming/outgoing sequence flows for corresponding parallel gateways). A parallel gateway will
simply wait for all incoming sequence flows and create a concurrent path of execution for each
outgoing sequence flow, not influenced by other constructs in the process model. So, the following
process is legal in MSactivator™:

Unbalanced parallel gateway

5

Decision gateway (XOR)

The XOR gateway will let you model a decision in the process.

When the execution arrives at this decision gateway, all outgoing sequence flows are evaluated in
the order in which they have been defined. The sequence flow whose condition evaluates to ‘true’ is
selected for continuing the process.

XOR decision gateway

To configure the gateway, you need to select the outbound link from the gateway, choose the
inbound task and configure the condition to transition to the next BPM task.

Configure a decision gateway

To configure a decision gateway, you need to configure each of its outbound links and select one of
the outbound link to be the default flow.

6

Configure a decision gateway

Default flow

Click on the decision gateway ans select the default flow of the process when there is not suitable
condition based on the result of the inbound task.

Configure the default flow

Workflow

For each outbound link, select the inbound workflow that will be used as the condition source for
the link.

Field

Select the field to use to test the condition. Field can be "Variable" or "Result Status".

With "Variable", you can choose one of the workflow variable and test its value for the decision.

With "Result Status", the decision will depend on the execution status of the workflow.

7

Design a BPM process

Create a new BPM

Click on "Create" to create a new BPM editor.

Use your mouse to add tasks and link them together.

 A BPM process must have a StartEvent and an EndEvent.

 Only one executable BPM process can be specified in a BPM definition.

Multiple process definition in a single BPM is not supported

You can save your BPM at anytime and edit it later. When you save you BPM, you need to select a
sub-tenant.

 A BPM is associated to a single sub-tenant.

Connecting workflows and processes

Select an executable task to see the list of workflows (based on the sub-tenant selected), then select
a process and provide its input parameters.

Configure a BPM task with workflow and processes

8

If the process you select in a BPM task is a "UPDATE" process (see Workflow design for more
details), you’ll have the possibility to select either an existing Workflow instance or use a new
instance created by one of the previous BPM task.

This is extremely useful for BPM designers for chaining tasks together.

Execution flow control

By default, the BPM execution will stop whenever the associated workflow process execution fails
but you may need to make sure that the BPM continues to execute despite the failure. This is
typically the case when there is a decision gateway where execution is routed based on the status of
the process execution.

To allow the BPM process to continue executing after a workflow process execution fails, you need
to edit the BPM task and check "Continue on Failure."

Control the execution flow

9

Execution breakpoint

With the execution breakpoint you can create pauses in the BPM flow execution. The BPM process
will run, stop and wait for the user to select the breakpoint symbol and click "Continue BPM" to
resume it’s execution.

Breakpoints can be used for debugging a complex BPM process without triggering all the workflow
and doing a step by step execution. It can also be used to organise a complex BPM into several part
and allow for manual validation of each intermediate steps.

Resume the execution flow from the user breakpoint

Execution tracking

The BPM engine will start executing the BPM tasks one by one and the status of the current
workflow process execution will be updated live in the view "LATEST EXECUTION RESULT" while
the detail of the process execution will be displayed.

Execution tracking

10

BPM instances management

BPM are associated to a subtenant in a way which is very similar to workflows, you can manage the
instances of BPM executions.

For instance, if you executed a BPM with a breakpoint, you don’t need to leave the BPM execution
screen open. You can trigger the execution, close the screen and later, select the instance and open
it.

BPM instances management

Getting Started Developing BPM
The BPM (Business Process Modeling) will allow you to design your processes to automate and then
execute these processes.

Uses of BPMN

Business Process modeling is used to communicate a wide variety of information to a wide variety
of audiences. BPMN is designed to cover many types of modeling and allows the creation of end-to-
end Business Processes.

11

The structural elements of BPMN allow the viewer to be able to easily differentiate between
sections of a BPMN Diagram.

The MSactivator™ provides the support for executable BPM Processes.

With the BPM design console, you can design your BPM and connect the BPM elements to
Workflows.

The MSactivator™ provides a partial support of the BPMN 2.0 specification and you will be able to
use Event and Activities.

Start Event and End Event

will let you specify the beginning and the end of the process execution.

Activities: Tasks

Integration Task will allow you to specify the flow of execution of your BPM.

Text Annotation

Use text annotation to add some description to your BPM elements.

Gateway and Intermediate Event

Not supported yes

Example

The BPM below is made of 1 start event, 5 integration task and an end event.

Each integration task calls a workflow from the workflows that are associated to the current
customer.

12

https://www.omg.org/spec/BPMN/2.0/

Create or Edit a BPM

To create a new BPM you need to select "Automation" on the left menu. This will list any BPM
available for the current customer.

You can either edit a BPM or create a new one from this screen. Use you mouse to add elements and
link them together.

For each task, you need to select a workflow and one of the process from that workflow. The BPM
editor will list all the processes defined in a workflow and when the process is selected it will list
the variables that are defined in the tasks by the function list_args.

 you should only select workflow processes with the type CREATE.

You can save your BPM design anytime and edit it later. The BPM files are stored in the repository
under /opt/fmc_repository/Datafiles/<TENANT ID>/<CUSTOMER ID>/bpmn

The Helloworld BPM

This tutorial will show you, in a simple way how to create a new BPM and call a Workflow.

It is using the Helloworld example wich is detailed in this documentation: Getting Started
Developing Workflows.

As stated above, the BPM tasks can only call Workflow process with the type CREATE. Before
creating the BPM, you need to add a new process to the Helloworld workflow and make sure its
type is CREATE. This process can have a single task and you can reuse the PHP code from the
Helloworld tutorial.

Once this is done, go to the "BPM" section under "Automation" and click on "+ Create BPM".

13

workflow_getting_started_developing.pdf
workflow_getting_started_developing.pdf

Add a Task Activity and an End Event.

Click on the task, select the Helloworld workflow, then from the list of process, select the new
CREATE process. Provide a value for the parameter name and save the BPM

To test your BPM, click on it’s name from the list of BPM and click on "Execute BPM".

You can check that the workflow process was executed and the message is visible in the processes
execution status.

14

15

Workflow Editor

The workflow editor is a web based UI tool for designing, developing, testing and releasing
automation workflows.

Overview
With the workflow editor, you can create new workflows or edit existing workflows.

This document explains how to use the editor to design workflows and implement them in PHP or
in Python.

The Workflow designer and execution engine are located in the architecture layer, between the
BPM and the Microservice.

Workflow overview
A workflow is a automation entity that can be used to automate all sorts of simple to complex
processes.

A workflow is defined by

• a set of variables that can be used to hold the state of a workflow instance;

• a set of processes made out of tasks. This is where the execution is coded.

The tasks are scripts that can be implemented either in PHP or in Python.

16

The lifecycle of a workflow

There are 3 main types of workflow processes:

CREATE

execute an automated process and create a new instance of the workflows.

UPDATE

execute an automated process that will (but it’s not mandatory) update the state of the process.

DELETE

execute an automated process that will also remove the instance of the workflow.

a delete process can be assigned to the trash icon of the workflow instances. By
default, the thrash icon action will only delete the workflow instance without
executing any specific process.

Execution status

The status a normal process execution is defined by the implementation of the tasks and it’s the
responsibility of the developer to handle the termination status. As a developer, you have 3
statuses, defined by constants in PHP or Python, that you can use in your task to define the
condition for transiting from a task to the next one.

• ENDED: the execution was successful, the next task will be executed and if it was the last task,
the process will be marked as "Success".

• WARNING: the execution was successful but some warning were raised, the next task will be
executed and if it was the last task, the process status will be displayed as "Warning".

• FAILED: the execution failed, the process execution will stop at the current task and the process
status will be noted as "Failed".

these documentations to get more details and code samples on this topic: PHP SDK
and Python SDK

How to persist the state of a workflow instance

The variables are used to define the current state of a workflow instance, this state is maintained in
a context which is persisted in the database.

For each workflow instance, the variable and their values are stored in the database in a context.
This context is accessible in read-write mode anytime in the process tasks, in order to store a value
of a variable or read a value from a variable.

Example:

in Python: read a value from the context

17

workflow_php_sdk.pdf
workflow_python_sdk.pdf

context = Variables.task_call()
my_name = context['name']

set a value in the context

context['name'] = my_name

Example:

in PHP: read a value from the context

$my_name = $context['name'];

set a value in the context

$context['name'] = $my_name;

The context is persisted in the database and its value is updated after each task execution.

This is how variable values can be passed, during the execution of a process, from one task to
another.

by default, the variables that are declared a persisted in the context but you can
also create local variables in the tasks and store them in the context.

Editor Overview
To create a new workflow, connect to the developer portal and click "+ Create" on the workflow
library swimlane.

Workflow information

Provide the information related to the workflow:

• Workflow Name: the name of the workflow

• Description: a description of the workflow

• Delete process: the delete process to associate to the workflow instance trash icon.

• Workflow variable name: default to service_id (see below for more detail about this field)

• Workflow language: PHP or PYTHON (this cannot be edited)

Workflow variables

Use "+ Create Variable" to add a variable to this workflow.

18

developer_portal.pdf

A variable can be used to store data in the context of the workflow instance and it can also be used
to generate the user input fields when executing a process from the UI.

It is possible to define a variable for "internal" use and decide to keep is hidden from the end-user.

A variable has a name, a type and a display name

This documentation will give you more details on the variables and the various types available.

Workflow processes

A workflow can have as many processes as needed. The processes provide the "public" functions
exposed by a workflow either with the UI or the REST API.

To create a process, click on the "+" and provide a name and a type (CREATE, UPDATE or DELETE).

 the other types listed in the UI are not supported yet.

A new process

Process scheduling

Scheduling of process execution can be authorize when defining a process by checking "Allow
scheduling" on the process definition screen.

When scheduling is allowed, the user execute the process either the usual way by clicking "Run" or
use "Schedule" to configure the process execution scheduling.

Tasks

The tasks are the smallest execution unit of a workflow.

A process can have as many tasks as needed and although it’s possible to implement a process with
a single task, splitting the overall process execution into smaller tasks will ease the code
maintenance and the execution monitoring.

Depending on the workflow language selected when creating the workflow, the task should be
implemented either in Python or in PHP.

When creating a new task, the UI will populate the code editor with a pre-defined code template

19

workflow_variables.pdf
rest_api.pdf

that you can use to start coding your tasks.

PHP template

<?php

require_once '/opt/fmc_repository/Process/Reference/Common/common.php';
①

function list_args()
②
{
 create_var_def('var_name', 'String');
 create_var_def('var_name2', 'Integer');
}

check_mandatory_param('var_name');
③

/**
 * $context => workflow context variable one per Instance
 * ENTER YOUR CODE HERE
 */
$context['var_name2'] = $context['var_name2'] + 1;
④

if ($context['var_name2'] % 2 === 0) {
⑤
 $ret = prepare_json_response(FAILED, 'Task Failed', $context, true);
 echo "$ret\n";
 exit;
}

task_success('Task OK'); // or task_error('Task FAILED');
⑥
?>

① include the php SDK libraries.

② function to list all the parameters required by the task and that should also be rendered as user
input field.

③ function to check whether all the mandatory parameters are present in user input.

④ assign a variable with a modified value from another variable.

⑤ task execution status will depend on the value of a variable

⑥ end of the task.

Python template

20

from msa_sdk.variables import Variables ①
from msa_sdk.msa_api import MSA_API

dev_var = Variables()
dev_var.add('var_name', var_type='String') ②
dev_var.add('var_name2', var_type='Integer')

context = Variables.task_call(dev_var)
context['var_name2'] = int(context['var_name2']) + 1 ③

ret = MSA_API.process_content('ENDED', 'Task OK', context, True)
print(ret) ④

① include the php SDK libraries.

② list all the parameters required by the task and that should also be rendered as user input field.

③ update the current context with another value read from the context.

④ end of the task.

Microservice to Task code generation

When you create a task you have the possibility to create a simple task pre-coded with on of the
template above but you can also choose to create a task from a Microservice call.

If you select the second option, you’ll have the possibility to select a Microservice and one for it’s
function to generate a task with all the code to execute this microservice auto-generated.

The code of the task is automatically generated.

21

The variables related to the microservice are added.

Logging and troubleshooting
You can add debugging information to help you with your development and also provide useful
information for troubleshooting task in production.

The log files are generated per workflow instance in the container msa_api under
/opt/wildfly/logs/processLog/. The log files are formatted as process-XX.log where XX is the
workflow instance ID.

22

39 is the workflow instance ID

You can monitor the logs of a process by opening the logs tab in the process execution view.

You can also monitor the logs of a process with the CLI command below

Monitor the process execution logs

docker-compose exec msa-api tail -F /opt/wildfly/logs/processLog/process-XX.log

Log a message in PHP

require_once '/opt/fmc_repository/Process/Reference/Common/common.php';

logToFile("a message");

Log a message in Python

from msa_sdk.variables import Variables
from msa_sdk import util

dev_var = Variables()

23

context = Variables.task_call(dev_var)
process_id = context['SERVICEINSTANCEID']

util.log_to_process_file(process_id, 'a message')

Workflow Variables
Variables are used to hold the parameters to pass to a workflow process. For instance, the port and
IP address to block in a firewall policy.

Workflow variable section

All variables are referenced with the prefix $params which is automatically set in the variable editor
screen and when a variable has to be referenced in one of the workflow functions, you need to use
the syntax {$params.your_variable} (see below for more examples).

By default the type of a variable is String but other types are supported such as Integer, Boolean,
Password, IpAddress, Microservice Reference,…

Overview

Variables are used to hold the parameters to pass to a workflow process. For instance, the port and
IP address to block in a firewall policy.

Variables can also be used to display user information that is not necessarily meant to be used for
configuring the managed entity.

Setting variables is done from the section "Variables" on the workflow editor screen.

24

The type of a variable will affect the way the workflow end user form will be rendered.

For instance, the type boolean will render the variable with true/false radio buttons.

Default settings

When creating or editing a variable, there are some information that need to be provided in the
"Default" section.

Variable

Name of the variable to use in the implementation of the workflow or when calling the REST API.

Type

The type of the variable should be one from the list below

String

The default type for a variable, it will accepts any value and the UI renders it as a input field
without any specifc validation with regards to the value set.

Boolean

This data type accepts a value of true or false, the UI will render it as a checkbox.

Integer

This data type represents a numerical value, the UI will render it as an input field restricted to
integer.

Code

This type allows to render a variable as a textfield with the possibility to select a code language
(default is simple text) for syntax highlighting

Password

 not supported yet

This data type represents a multi-character value that is hidden from plain sight (i.e. the value is
represented as asterisks instead of clear text).

IPv4 address and mask, IPv6 mask

 not supported yet

This data type will enforce data validation against IP address formats.

25

Composite

The variable type composite provide ways to add control over the behavior of the workflow user
form.

It can be used, for instance, to show/hide parts of the form based on the value of another
component of the form.

Let’s take a simple example to illustrate the use of the composite type with a simple workflow for
managing firewall policy.

The workflow allows the user to create a firewall policy to block a source IP address and a
destination port but the user may also need to select the protocol TCP, UDP or ICMP and in the case
of ICMP, the destination port is not relevant. We need to build a workflow UI where the user will
have to provide the source IP and destination port when the protocol is TC or UDP and only the
source IP when the protocol is ICMP.

In this example, the variable "dst_port" for the destination port should be typed as a composite
because it’s behavior when rendered as a user web form will depend on the other variable
"protocol".

When the user choose TCP or UDP

When the user selects ICMP

To implement this behavior, set the type of "dst_port" variable to "Composite".

dst_port type is "Composite"

26

In the advanced parameter tab, first choose the "Selector Variable" and select the protocol (note
that the list shows the display name, not the actual name of the variable)

Then configure the "Behavior for the Composite". The selector is a boolean so you can only have 2
types of behavior, one for true and one for false.

27

Each behavior can be configured by editing it with the pencil icon.

In our case, if the selector is set to true (when the user selects ICMP), the variable "dst_port" should
be hidden: uncheck the attribute "Visible" in the advanced parameters for composite.

Hide the destination port when ICMP is checked

28

And when the selector is set to false, the variable "dst_port" should be visible and mandatory.

Show the destination port when ICMP is not checked

29

Link

 not supported yet

This type is useful if you wat to display a URL in the user form, for instance to link to some
documentation on a web server. It is usually used in read-only mode with the URL set as the default
value of the variable

File

 not supported yet

This type is useful for allowing a user to select a file.

Auto Increment

This type is used to maintain an incremental counter in within the instances of a workflow for a
managed entity. This is useful for managing the object_id.

Table 1. Specific advanced parameters

Increment an integer to define the increment step

Start Increment the initial value for the variable

Workflows sharing the same increment a list of workflows that are also using the same
variable and need to share a common value.

Device

This type is used to allow the user to select a managed entity and pass its identifier to the
implementation of the workflow.

In the task implementation you need to list the variables with "Device" for the type

PHP

function list_args()
{
 create_var_def('my_device');
}

Python

from msa_sdk.variables import Variables

TaskVariables = Variables()

TaskVariables.add('my_device')

30

List of managed entities

A very common use of the type Device is for automating configuration (or any other automated
action) over a list of managed entities.

You can do that by creating a array variable with the type Device and loop through the array in the
task.

Sample task to list managed entities (Python)

from msa_sdk.variables import Variables
from msa_sdk.msa_api import MSA_API
from msa_sdk import util

dev_var = Variables()
dev_var.add('me_list.0.id') ①

context = Variables.task_call(dev_var)
process_id = context['SERVICEINSTANCEID'] ②

me_list = context['me_list'] ③

for me_id in me_list: ④
 util.log_to_process_file(process_id, me_id['id']) ⑤

ret = MSA_API.process_content('ENDED', 'Task OK', context, True)
print(ret)

① declare the the array variable to be displayed in UI

② read the current process ID

③ read the list of managed entities selected by the user on the UI

④ loop through the list and print each managed entity ID in the process log file

⑤ print the managed entity identifier in the process log file

Sample code to list managed entities (PHP)

function list_args()
{
 create_var_def('devices.0.id');
}

// read the ID of the selected managed entity
$devices = $context['devices'];

foreach ($devices as $device) {
 $device_id = $device['id'];

 logToFile("update device $device_id");
}

31

Subtenant

This type will allow the user to select a subtenant and use the subtenant ID from the workflow
instance context in the task.

The source code below will let the user select a subtenant and display the subtenant ID on the
execution console

Sample task to create a UI to select a subtenant

<?php
require_once '/opt/fmc_repository/Process/Reference/Common/common.php';

function list_args()
{
 create_var_def('subtenant'); ①
}

$subtenant = $context['subtenant']; ②

task_success('Task OK: '.$subtenant); ③
?>

① declare the variable subtenant to be displayed in the user form

② read the variable value from the context

③ print the value on the execution console

List of subtenant

If you need to select multiple subtenants, you have to create an array variable with the type
Customer.

With the variable $params.subtenants.0.id typed as Customer, the code below will ask for the user to
select 1 or more subtenant, print the identifier of each one in the process log file and display the
number of subtenant selected on the UI.

Sample task to list the subtenant

<?php

32

workflow_editor.pdf#logging

require_once '/opt/fmc_repository/Process/Reference/Common/common.php';

function list_args()
{
 create_var_def('subtenants.0.id');
}

$subtenants = $context['subtenants'];

foreach ($subtenants as $subtenant) { ①
 logToFile("subtenant: ".$subtenant['id']); ②
}

task_success('Task OK: '.sizeof($subtenants)." subtenant selected");
?>

① loop through the list of subtenants

② log the value in the process log file

 the code for iterating over an array of managed entities is very similar

Microservice reference

This type is key when integrating workflows and microservices.

It allows you to import and use the microservice instance data from a managed entity in your
automation code.

To use this type you need 2 variables:

1. a variable with the type Managed Entity to select the managed entity to get the data from

2. a variable with the type Microservice Reference to select the microservice that will pull the data

When creating a variable typed Microservice Reference you need to select the Managed Entity
variable to use and the microservice that will act as the data source.

the microservice must be attached to the managed entity with a deployment
setting in order for the microservice reference to work.

In the example below, the variable $params.interface is typed as Microservice Reference. In the
"Advanced" tab, the field "Microservice Reference" references one or several microservice and the
field "Device ID" references a managed entity.

33

Sample Python task to create the UI to select a managed entity and select a microservice instance from this
managed entity

from msa_sdk.variables import Variables
from msa_sdk.msa_api import MSA_API

dev_var = Variables()
dev_var.add('managed_entity')
dev_var.add('interface.0.name')

context = Variables.task_call(dev_var)

ret = MSA_API.process_content('ENDED', 'Task OK', context, True)

print(ret)

It also possible to use an array to select multiple values from the microservice

34

Sample PHP task to select multiple values from the microservice instance

from msa_sdk.variables import Variables
from msa_sdk.msa_api import MSA_API

dev_var = Variables()
dev_var.add('managed_entity', var_type='Device')
dev_var.add('interface.0.name', var_type='OBMFRef') ①

context = Variables.task_call(dev_var)

ret = MSA_API.process_content('ENDED', 'Task OK', context, True)

print(ret)

① Use a variable array to allow multiple value selection

Workflow reference

This type is useful for referencing a workflow from another one.

Display Name

The display value for the variable name.

Description

An optional description of this variable.

Advanced settings

Depending on the selected type, some advanced parameters may be differ.

35

Setting Description

Default Value the default value that will be used when creating
a new workflow instance

Values for Drop-down a list of possible value the user can choose from

Mandatory a value has to be provided for this variable

Read only variable the value cannot be edited

Section Header group some variables in the workflow console
(see below).

Show only in edit view hide the variable from the workflow console

Array settings

When you are dealing with variable arrays, these options will let you control the possible actions a
user can have over the array.

Variable arrays

To create a variable array, you need to follow a precise naming convention: $params.<ARRAY
NAME>.0.<ELEMENT NAME>. The 0, is the separator that will allow the UI and the configuration engine
that this variable is an array.

Variable array with 2 elements

Getting Started Developing Workflows in PHP

36

../user-guide/workflows.pdf#workflow-console
#group_variables
../user-guide/workflows.pdf#workflow-console

Overview

This tutorial walks you through the design and development of your first workflow.

Workflows can be used to automate a wide variety of tasks and processes, such as:

• Service configuration chaining

• VNF lifecycle management

• Configuration audit and verification

• Automated customer on-boarding

• …

The "Helloworld" Workflow

As an example, we’ll use the "Helloworld" workflow. The "Helloworld" workflow will print a name
as IN parameter and will display a message to the user ("Hello NAME").

This workflow is composed of 3 processes: one to create the new instance of the workflow, one to
enter the name and print it, and one to delete the instance.

Create a new Workflow

From the Developer dashboard click on "+ Create"

In the tab "Information", set a name, a description and set the Workflow variable name to
service_id and save your workflow.

37

../user-guide/automation_workflows.pdf

Create a variable "Name" in the tab "Variable".

To start testing your workflow, you need to associate it to a customer. Make sure that you have no
tenant selected, go to the "Automation" section, you should see your workflow in the list.

You can use the magnifier to search for it.

Use the link "Add to.." to associate the workflow to a customer.

Select the customer to use for designing and testing the workflow.

38

Once done, you can select your customer, list its workflows and edit it with the pencil icon.

Create the Processes

The "create instance" Process

In order to be used, every Workflow should be instantiated first. This is the role of the process with
the type "Create".

even though for most use cases, a single "CREATE" process is sufficient, it is
possible to have several "CREATE" processes to support various ways of creating
the Workflow instance (You can relate that to having several object constructor in
an OOP language such as Java).

For this tutorial you will create one process named "create instance" and add one task to this
process. This task will simply display a message to the process execution console.

<?php
/**
 * This file is necessary to include to use all the in-built libraries of
/opt/fmc_repository/Reference/Common
 */
require_once '/opt/fmc_repository/Process/Reference/Common/common.php';

39

/**
 * List all the parameters required by the task
 */
function list_args() { }
/**
 * End of the task do not modify after this point
 */
task_exit(ENDED, "workflow initialised");
?>

Once done, save the Workflow.

The "delete instance" Process

Follow the same steps as in the "create instance" process, but make sure that the type of the process
is set to "DELETE", instead of "CREATE".

In our case, we only need the instance to be deleted, therefore we don’t need a
Task to be added to this Process but in a real world use case, your DELETE process
will probably take care of removing or cleaning up some parts of your managed
system.

The "print message" Process

For the print process, use the process type "UPDATE". It will take one parameter that will be used to
print your message. Use the code below to create a task that will read the name from the user form
and print it in the live console.

<?php
/**
 * This file is necessary to include to use all the in-built libraries of
/opt/fmc_repository/Reference/Common
 */
require_once '/opt/fmc_repository/Process/Reference/Common/common.php';
/**

40

 * List all the parameters required by the task
 */
function list_args()
{
 create_var_def('name', 'String');
}
check_mandatory_param('name');

/**
 * get the value of name from the context and create a variable out of it
 */
$name=$context['name'];
/**
 * print the value in the log file /opt/jboss/latest/log/process.log
 */
logToFile($name);

/**
 * End of the task do not modify after this point
 */
task_exit(ENDED, "Hello " . $name);

?>

Test the Workflow

Before you can test the workflow and execute some processes, you need to attach the workflow to
your current subtenant.

Use the "+ create instance" action to execute the "create instance" process and create a new instance
of your workflow.

A new instance is available and you can execute the process "print message".

41

../user-guide/automation_workflows.pdf#workflow_selection

The process "print message" will start executing and will executes the tasks sequentially.

The name will be displayed in the task execution status popup, below the name of the task.

Getting Started Developing Workflows in Python

Overview

This tutorial walks you through the design and development of your first workflow in Python. This
tutorial is similar to the Helloworld example in PHP

Workflows can be used to automate a wide variety of tasks and processes, such as:

• Service configuration chaining

• VNF lifecycle management

• Configuration audit and verification

• Automated customer on-boarding

• …

The "Hello world" Workflow

As an example, we’ll use the "Helloworld" workflow. The "Helloworld" workflow will print a name

42

workflow_getting_started_developing_php.pdf
../user-guide/automation_workflows.pdf

as IN parameter and will display a message to the user ("Hello NAME").

This workflow is composed of 3 processes: one to create the new instance of the workflow, one to
enter the name and print it, and one to delete the instance.

Create a New Workflow

From the Developer dashboard click on "+ Create"

In the tab "Information", set a name, a description and set the Workflow variable name to
service_id and save your workflow.

Create a variable "Name" in the tab "Variable".

43

workflow_editor.pdf

To start testing your workflow, you need to associate it to a customer. Make sure that you have no
tenant selected, go to the "Automation" section, you should see your workflow in the list.

You can use the magnifier to search for it.

Use the link "Add to.." to associate the workflow to a customer.

Select the customer to use for designing and testing the workflow.

44

Once done, you can select your customer, list its workflows and edit it with the pencil icon.

Create the Processes

The "create instance" Process

In order to be used, every Workflow should be instantiated first. This is the role of the process with
the type "Create".

even though for most use cases, a single "CREATE" process is sufficient, it is
possible to have several "CREATE" processes to support various ways of creating
the Workflow instance (You can relate that to having several object constructor in
an OOP language such as Java).

For this tutorial you will create one process named "create instance" and add one task to this
process. This task will simply display a message to the process execution console.

from msa_sdk.variables import Variables
from msa_sdk.msa_api import MSA_API

45

dev_var = Variables()
dev_var.add('name', var_type='String')

context = Variables.task_call(dev_var)

ret = MSA_API.process_content('ENDED', 'workflow initialized', context, True)
print(ret)

Once done, save the Workflow.

The "delete instance" Process

Follow the same steps as in the "create instance" process, but make sure that the type of the process
is set to "DELETE", instead of "CREATE".

In our case, we only need the instance to be deleted, therefore we don’t need a
Task to be added to this Process but in a real world use case, your DELETE process
will probably take care of removing or cleaning up some parts of your managed
system.

The "print message" Process

For the print process, use the process type "UPDATE". It will take one parameter that will be used to
print your message. Use the code below to create a task that will read the name from the user form
and print it in the live console.

from msa_sdk.variables import Variables
from msa_sdk.msa_api import MSA_API

context = Variables.task_call()
my_name = context['name']

ret = MSA_API.process_content('ENDED', f'Hello {my_name}', context, True)
print(ret)

46

Test the Workflow

Use the "+ create instance" action to execute the "create instance" process and create a new instance
of your workflow.

A new instance is available and you can execute the process "print message".

The process "print message" will start executing and will executes the tasks sequentially.

The name will be displayed in the task execution status popup, below the name of the task.

47

Python SDK
The MSactivator™ provides a support for Python SDK dedicated to developing automation
workflows.

Overview

This SDK provides a set of functions to call the MSactivator™ REST API and automate action on the
MSactivator™ such as create and activate managed entities, call microservice functions, call
processes from other workflows…

The SDK API documentation is available online on your MSactivator™ instance at: https://localhost/
msa_sdk

Contribution

The sources of the SDK is available on Github.

Code samples

Sample implementation of a SDK function.

This code sample is an example of the implementation of a Python SDK function to create a new
managed entity.

class Device(MSA_API):

 self.api_path = "/device"

 def create(self):
 self.action = 'Create device'
 self.path = '{}/v2/{}'.format(self.api_path, self.customer_id) ①

 data = {"manufacturerId": self.manufacturer_id,
 "modelId": self.model_id,
 "managementAddress": self.management_address,
 "reporting": self.reporting,
 "useNat": self.use_nat,
 "logEnabled": self.log_enabled,
 "logMoreEnabled": self.log_more_enabled,
 "managementInterface": self.management_interface,
 "mailAlerting": self.mail_alerting,
 "passwordAdmin": self.password_admin,
 "externalReference": self.device_external,
 "login": self.login,
 "name": self.name,
 "password": self.password,
 "id": 0,
 "snmpCommunity": self.snmp_community}
 if self.management_port:

48

https://localhost/msa_sdk
https://localhost/msa_sdk
https://github.com/openmsa/python-sdk

 data["managementPort"] = self.management_port

 self.call_post(data) ②
 self.fail = not self.response.ok
 if self.response.ok:
 self.device_id = json.loads(self.content)['id']

 return json.loads(self.content)

① the REST API to call

② post the data to the REST API

Sample call of a function in a workflow task.

from msa_sdk.device import Device
from msa_sdk.variables import Variables
import json

dev_var = Variables() ①

dev_var.add('customer_id')
dev_var.add('managed_device_name')
dev_var.add('manufacturer_id')
dev_var.add('model_id')
dev_var.add('device_ip_address')
dev_var.add('login')
dev_var.add('password')
dev_var.add('password_admin')

context = Variables.task_call(dev_var)

new_device = Device(context['customer_id'], context['managed_device_name'], context
['manufacturer_id'],context['model_id'], context['login'], context['password'],
context['password_admin'],context['device_ip_address'])

new_device.create() ②

context['device_id'] = new_device.device_id ③

print(new_device.process_content('ENDED', 'Task OK', context, False))

① define the parameters to pass to the API

② create the new managed entity

③ store the ID of the new managed entity in the workflow instance context

Microservice functions

49

Call a microservice CREATE/UPDATE/DELETE function

from msa_sdk.variables import Variables
from msa_sdk.msa_api import MSA_API
from msa_sdk.order import Order
from msa_sdk.orchestration import Orchestration
from msa_sdk import util
import json

me_id = context['me'][3:] ①

micro_service_vars_array = { ②
 "object_id": "12.1.1.1",
 "mask": "255.255.255.0",
 "gateway": "10.10.1.254"
 }
object_id = "null"
route = {"routing": {object_id: micro_service_vars_array}} ③
try:
 ms_order = Order(me_id)
 ms_order.command_execute('CREATE', route) ④
except Exception as e:
 ret = MSA_API.process_content('FAILED', f'CREATE ERROR: {str(e)}', context, True)
 print(ret)

① Read the ID of the managed entity from the context, assuming the variable 'me' type is Device

② Build the Microservice JSON params for the CREATE operation of the microservice.

③ The value of the key should match the Microservice file name (stripped of the .xml file
extension)

④ Call the CREATE for simple_firewall MS for each device (use UPDATE or DELETE for the other
operations)

The function command_execute is defined in order.py

Call a microservice CREATE on multiple managed entities

from msa_sdk.variables import Variables
from msa_sdk.msa_api import MSA_API
from msa_sdk.order import Order
from msa_sdk import util

dev_var = Variables()
dev_var.add('object_id')
dev_var.add('service')
dev_var.add('src_ip')
dev_var.add('src_itf')
dev_var.add('dst_ip')
dev_var.add('dst_itf')

50

https://github.com/openmsa/python-sdk/blob/develop/msa_sdk/order.py

dev_var.add('firewalls.0.id') ①
dev_var = Variables()

context = Variables.task_call(dev_var)

object_id = context['object_id']

micro_service_vars_array = {"object_id": context['object_id'],
 "src_ip": context['src_ip'],
 "src_mask": '255.255.255.255',
 "dst_ip": context['dst_ip'],
 "dst_mask": '255.255.255.255',
 "src_itf": context['src_itf'],
 "dst_itf": context['dst_itf'],
 "action": 'deny',
 "service": context['service']
 }

simple_firewall = {"simple_firewall": {object_id: micro_service_vars_array}}

firewalls = context['firewalls']
for firewall in firewalls:
 devicelongid = firewall['id'][-3:]
 try:
 order = Order(devicelongid)
 order.command_execute('CREATE', simple_firewall)
 except Exception as e:
 ret = MSA_API.process_content('FAILED', f'CREATE ERROR: {str(e)}', context, True)
 print(ret)

ret = MSA_API.process_content('ENDED',
 f'IPTABLES RULE INITIALIZED',
 context, True)

print(ret)

① use a variable array typed as a Managed Entity

Call a microservice IMPORT function

from msa_sdk.variables import Variables
from msa_sdk.msa_api import MSA_API
from msa_sdk.order import Order
from msa_sdk.orchestration import Orchestration
from msa_sdk import util
import json

try:
 order = Order(me_id) ①
 order.command_execute('IMPORT', {"routing":"0"}) ②

51

 order.command_objects_instances("routing") ③
 ms_instances = json.loads(order.content) ④

except Exception as e:
 ret = MSA_API.process_content('FAILED', f'IMPORT ERROR: {str(e)}', context, True)
 print(ret)

① initialize an Order object

② execute the IMPORT of a microservice defined in a file routing.xml

③ get the microservice instances

④ store the instance in a variable to further reuse

Getting more Examples

You will find many examples of Workflows in https://github.com/openmsa/Workflows

How to create you libraries of functions

When developing a workflow you will probably have de define some functions that will be used in
multiple tasks.

In order to avoid code duplication and ease the maintenance of your workflow one option is to
create a common folder at the same level as your other task folder and create a python file common.py
where the shared functions will be defined.

my_workflow
 |- my_workflow.xml
 |- common
 |- common.py
 |- process_1
 |- task1.py

common.py will contain the python code and can also import the Python SDK as well as other Python
modules

from msa_sdk.variables import Variables
from msa_sdk.msa_api import MSA_API
from msa_sdk import util
from msa_sdk.order import Order
from datetime import datetime
import time
import json
import typing
import copy
import requests
import ipaddress

52

https://github.com/openmsa/Workflows

import re
import pandas as Pandas

dev_var = Variables()
context = Variables.task_call(dev_var)

Function: to convert
def printTable(myDict): ①
 df = Pandas.DataFrame.from_records(myDict)
 return df.to_string()

① a function that can be used in a task

In the task implementation you need to add the following lines to import this common library

import os
import os.path
import sys
from pathlib import Path
from msa_sdk.variables import Variables
from msa_sdk.msa_api import MSA_API
currentdir = os.path.dirname(os.path.realpath(__file__)) ①
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)
from common.common import *

dev_var = Variables()
context = Variables.task_call(dev_var)

if data:
 result = printTable(data) ②
 context['result'] = result

ret = MSA_API.process_content('ENDED', 'DONE', context, True)

print(ret)

① include the path of common in the modules

② call the method defined in the common library

How to extend the SDK

Create a custom library of scripts

You can extend the SDK by adding your own scripts in the MSactivator™. The scripts have to be
added in the container msa_dev, under the directory
/opt/fmc_repository/Process/PythonReference/custom

In a workflow task, you can use the code below to import your custom scripts

53

import custom.myfile

or

from custom.myfile import SOME_METHOD

You can create a git repository under
/opt/fmc_repository/Process/PythonReference/custom with git init and set a
remote to a remote repository to ease the management and versioning of your
custom SDK library

Install additional Python modules

To install an additional Python package you need to log into the msa_dev container and execute

python3 -m pip install \
 --install-option="--install-lib=/opt/fmc_repository/Process/PythonReference" PACKAGE
①

① PACKAGE is the name of the Python package to install

To list the packages that are installed

python3 -m pip list

Miscellaneous

Output messages to the process execution UI

When a task runs, it is often useful to be able to provide real time message update on the UI.

Output message from a task to the user interface

The code sample below shows how to do it.

54

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes

from msa_sdk.orchestration import Orchestration
from msa_sdk.msa_api import MSA_API
import time

Orchestration = Orchestration(context['UBIQUBEID'])
async_update_list = (context['PROCESSINSTANCEID'],
 context['TASKID'],
 context['EXECNUMBER']) ①

Orchestration.update_asynchronous_task_details(*async_update_list,
 'going to sleep') ②
time.sleep(2) ③
Orchestration.update_asynchronous_task_details(*async_update_list,
 'wake up') ④

① creates an array with the information about current process and task

② update the UI with a message

③ execute some code

④ update the UI with another message

Write debug message in the process log file

To write debugging messages in the process execution log file (msa-api container, under
/opt/wildfly/logs) you can use the function log_to_process_file

from msa_sdk import util

dev_var = Variables()
context = Variables.task_call(dev_var)

process_id = context['SERVICEINSTANCEID'] ①

util.log_to_process_file(process_id, 'a debug message')

① read the current process ID from the context

Contributing

Help us improve the SDK: fork https://github.com/openmsa/python-sdk and submit your
changes with a Pull Request

PHP SDK
The MSactivator™ provides a support for PHP SDK dedicated to developing automation workflows.

55

https://github.com/openmsa/python-sdk

Overview

This SDK provides a set of functions that can be used to call the MSactivator™ REST API and
automate actions on the MSactivator™ such as create and activate managed entities, call
microservice function, call processes from other workflows…

Where to find the source code of the SDK?

The SDK functions are implemented in a set of PHP files stored in the MSactivator™ container
msa_dev under /opt/fmc_repository/Process/Reference/Common/Library

The PHP files are organised by API topic and contains the functions that are calling the REST API.

These functions can be called directly when implementing the tasks of the workflow processes.

Code samples

Sample implementation of a SDK PHP function

The source code below shows the implementation of one of the functions provided by the SDK.

/**
 * Create Subtenant
①
 * curl -u ncroot:ubiqube -H "Content-Type: application/json" \
 * -XPOST 'http://ip_address/ubi-api-
rest/customer/{prefix}?name={name}&reference={reference}' -d '
 {
 "name": "contactName",
 "firstName": "contactFirstName",
 "address": {
 "streetName1": "sn1",
 "streetName2": "sn2",
 "streetName3": "sn3",
 "city": "city123",
 "zipCode": "zip123",
 "country": "Country098",
 "fax": "1233",
 "email": "contact @ company.com",
 "phone": "123"
 }

 }
 */
function _customer_create ($operator_prefix,
 $customer_name,
 $external_reference = "",
 $contact_details = "{}") {
②

56

 $msa_rest_api = "customer/{$operator_prefix}?name={$customer_name}&reference=
{$external_reference}";
 $curl_cmd = create_msa_operation_request(OP_POST, $msa_rest_api,
$contact_details); ③
 $response = perform_curl_operation($curl_cmd, "CREATE CUSTOMER");
④
 $response = json_decode($response, true);
 if ($response['wo_status'] !== ENDED) {
⑤
 $response = json_encode($response);
 return $response;
 }
 $response = prepare_json_response(ENDED, ENDED_SUCCESSFULLY, $response
['wo_newparams']['response_body']);
 return $response;
}

① A description of the function and an sample call of the matching REST API

② The function of the SDK always starts with _

③ Call a SDK helper function to build the curl request

④ Call a SDK helper function to execute the curl request

⑤ Call a SDK helper function (defined in utility.php) to format a response with proper status,
comment and response payload

Sample call of a SDK function in a workflow task.

// Create subtenant
logToFile("Creating subtenant:\n");

$customer_contact_details_array = array();
①
$customer_contact_details_array['firstName'] = $customer_contact_first_name;
$customer_contact_details_array['name'] = $customer_contact_name;
if (isset($context['email_recipient']) && $context['email_recipient']){
 $address = array('email' => $context['email_recipient']);
 $customer_contact_details_array['address'] = $address;
}

$customer_contact_details_json = json_encode($customer_contact_details_array);
②

// Call function to create customer
$response = _customer_create ($operator_prefix, $customer_name,
$customer_ext_reference,
 $customer_contact_details_json);
③

$response = json_decode($response, true);

57

④
if ($response['wo_status'] !== ENDED) {
⑤
 $response = json_encode($response);
 echo $response;
 exit;
}
logToFile(debug_dump($response['wo_newparams'], "RESPONSE\n"));
⑥

① Build the array with the customer contact details. This parameter is defaulted by an empty array

② Encode the array into it’s json representation

③ Call the SDK function

④ Get the JSON response as an array

⑤ If the call to the function failed, echo the response and exit the task

⑥ If the call was successful continue the task execution

Output messages to the process execution UI

When a task runs, it is often useful to be able to provide real time message update on the UI.

The code sample below shows how to do it.

$PROCESSINSTANCEID = $context['PROCESSINSTANCEID'];
$EXECNUMBER = $context['EXECNUMBER'];
$TASKID = $context['TASKID'];
$process_params = array('PROCESSINSTANCEID' => $PROCESSINSTANCEID,
①
 'EXECNUMBER' => $EXECNUMBER,
 'TASKID' => $TASKID);

update_asynchronous_task_details($process_params,
 "going to sleep for ".$context['sleep']. "sec.");
②
sleep($context['sleep']);
③

58

update_asynchronous_task_details($process_params, "wakeup");
④

① creates an array with the information about current process and task

② update the UI with a message

③ execute some code

④ update the UI with another message

Microservice functions

Call a microservice CREATE/UPDATE/DELETE function

$micro_service_vars_array = array (); ①
$micro_service_vars_array ['object_id'] = $context ['id']; ②

$micro_service_vars_array ['src_ip'] = $context ['src_ip'];
$micro_service_vars_array ['src_mask'] = $context ['src_mask'];

$micro_service_vars_array ['dst_ip'] = $context ['dst_ip'];
$micro_service_vars_array ['dst_mask'] = $context ['dst_mask'];

$micro_service_vars_array ['service'] = $context ['service'];
$micro_service_vars_array ['action'] = $context ['action'];

$object_id = $context ['id'];

$simple_firewall = array (
 'simple_firewall' => array (③
 $object_id => $micro_service_vars_array
)
);

$response = execute_command_and_verify_response ($managed_entity_id, CMD_CREATE,
$simple_firewall, "CREATE simple_firewall"); ④

① Build the Microservice JSON params for the CREATE operation of the microservice.

② Assign the values passed to the workflow process to the array of parameters of the Microservice.

③ The value of the key should match the Microservice file name (stripped of the .xml file
extension)

④ Call the CREATE for simple_firewall MS for each device (use CMD_UPDATE or CMD_DELETE for
the other operations)

The function execute_command_and_verify_response is defined in msa_common.php

Synchronize the managed entity configuration

The code sample below uses a PHP function from the SDK to trigger this operation by calling the

59

https://github.com/openmsa/Workflows/blob/master/Reference/Common/Library/msa_common.php

IMPORT function of a microservice

$response = synchronize_objects_and_verify_response($managed_entity_id); ①

① The variable $managed_entity_id is the database ID of the managed entity

Useful functions

Here is a list of some of the most commonly used functions.

Managed entities

Managed entity creation

function _device_create ($customer_id, $device_name, $manufacturer_id,
 $model_id, $login, $password, $password_admin,
 $management_address, $device_external_reference = "",
 $log_enabled = "true", $log_more_enabled = "true",
 $mail_alerting = "true", $reporting = "false", $snmp_community
= SNMP_COMMUNITY_DEFAULT, $managementInterface = "")

location: device_rest.php

if you need to set the hostname or update the credentials you can use some
dedicated functions from device_rest.php

Managed entity activation

function _device_do_initial_provisioning_by_id ($device_id)

location: device_rest.php

Managed Entity Deletion

function _device_delete ($device_id) {

location: device_rest.php

Tenant and Subtenant

Tenant creation

function _operator_create ($operator_prefix, $name)

location: operator_rest.php

60

https://github.com/openmsa/Workflows/blob/master/Reference/Common/Library/device_rest.php
https://github.com/openmsa/Workflows/blob/master/Reference/Common/Library/device_rest.php
https://github.com/openmsa/Workflows/blob/master/Reference/Common/Library/device_rest.php
https://github.com/openmsa/Workflows/blob/master/Reference/Common/Library/device_rest.php
https://github.com/openmsa/Workflows/blob/master/Reference/Common/Library/operator_rest.php

Subtenant creation

function _customer_create ($operator_prefix, $customer_name, $external_reference = "",
$contact_details = "{}")

location: customer_rest.php

Getting more Examples

You will find many examples of Workflows in https://github.com/openmsa/Workflows

61

https://github.com/openmsa/Workflows/blob/master/Reference/Common/Library/customer_rest.php
https://github.com/openmsa/Workflows

Microservice Editor

The microservice editor is a web based UI tool for designing, developing, testing and releasing
microservices.

Microservice editor

Overview

From the developer portal, click on "Create Microservice" to create the microservice.

62

The microservice console is composed of a vertical menu on the left and a main screen

Information

Microservices are vendor specific, the implementations of the functions to create, update, delete or
import a managed entity configuration will depend on the managed entity, the type of remote
management interface, the format of the configuration, how it is structured,…

Vendor and model

Select the correct vendor/model information. This will be used by the deployment settings to filter
the microservice that are eligible for selection.

Configuration Type

It is also important to select the proper configuration type:

• cli: for managed entities such as Linux, Cisco IOS, Fortigate,…

• xml: for managed entities with a REST management API (both XML and JSON API are
supported)

• netconf: for managed entities that support Netconf as the management API

The editor UI will adjust based on the configuration type and this setting cannot be changed once
the microservice is created.

Import rank

The import rank is needed to control in which order the execution of the import functions of your
microservices will be executed when you click on "Synchronize with Managed Entity" from the
managed entity tab "configure".

Setting correct import rank is important when you have dependencies between your microservices.

63

Microservice dependencies are created by leveraging the variable type "Microservice Reference"
(see documentation about microservice variables).

Once created, you can search for your microservice in the list and attach it to a deployment setting,
you can also edit it or delete it.

The easiest way to design a microservice is to use a managed entity dedicated to
testing and follow in a code-test-fix development cycle. This documentation uses
the Linux Managed Entity provided by the mini lab.

Variables

Variable are usually defined to hold the parameters to be passed to the microservice. For instance,
the port and IP to block for a firewall policy. Variables can also be used to display user information
that is not meant to be used for configuring the managed entity.

Setting variables is done from the section "Variables" on the microservice editor screen.

When you create a new microservice, the variable object_id, which is mandatory, will be set and
cannot be deleted. It can be edited to set it’s type and other advanced properties.

All variables are referenced with the prefix $param which is automatically set in the variable editor
screen and when a variable has to be referenced in one of the microservice function, you need to
use the syntax {$param.your_variable} (see below for more examples)

By default the type of a variable is String but other types are supported such as Integer, Boolean,
Password, IpAddress, ObjectRef,…

Usage of the {$object_id} variable

The {$object_id} is a reserved variable used to reference objects into the database and used as
variable name in Smarty in the template resolution.

64

When the parameters are passed to the engine you give:

{"interface":{"Interface-Service-engine0/0":{"ip_address":"1.2.3.4"}}}

The variables values are:

{$object_id} => "Interface-Service-engine0/0"
{$params.ip_address} => "1.2.3.4"

Functions

From the left menu of the microservice editor there is a list of functions to implement. While none
of the functions are mandatory, at least one of 'Create', 'Update', 'Delete' or 'Import' has to be
implemented in oder to have a microservice that can actually do something.

In order to provide a full lifecycle management of a service on a managed entity, the 4 functions
above have to be implemented.

The function 'Read', 'List' are optional and while it’s possible to implement them, you’ll have to rely
on the REST API to execute them.

The function 'Constraint' allow the implementation of custom constraints to be verified before the
managed entity is actually configured.

Create

The Create function takes care of configuring a new service in the managed entity. For example, a
new static route if the managed entity is a router.

This functions is implemented either in PHP Smarty template language for CLI microservice (see
"Microservice Template with PHP Smarty" for more details) or as a REST API call for XML
microservice.

When this function is implemented, a button "+ Add Row" will appear in the tab "Configure" of the
managed entity that uses this microservice.

Example

This example is a Samrty template that will take the parameters entered in the user form and
generate a configuration.

config router static
edit {$params.object_id}
set dst {$params.ip_dest} {$params.mask}
set gateway {$params.gw}
set device {$params.interface}
{if empty($params.comment)}
unset comment

65

{else}
set comment "{$params.comment}"
{/if}
next
end

Update

The Update function takes care of updating an existing service in the managed entity.

Delete

The Delete function takes care of deleting an existing service in the managed entity.

Example

This example generate a conf based on the instance parameters as store in the database.

config router static
delete "{$routing.$object_id.object_id}"
end

Import

The role of the Import function is to import the actual configuration of the managed entity into the
MSactivator™ database.

The implementation of the Import is either based on a set of regular expressions or a set of XPath
expressions that build a parser that will extract the values of the variables.

The Import is made of 3 parts:

• the command to run on the device for CLI command based device or the REST API to call.

• the configuration parser, implemented with a set of regular expressions or XPath expressions.
Only the microservice identifier extractor is mandatory.

• a set of optional post import operations implemented in Smarty language
(https://www.smarty.net/).

Post-import

This example shows how to use the post import section of a microservice in order to fulfill one of
it’s variable with data coming from other microservice instances already imported in MSactivator™
database.

This example is based on Fortigate configuration example, more precisely on the web filtering
configuration sub-part.

This first relies on the ability to define an import rank in the microservice definition. In our
example the microservice Web_Filter(.xml) will need the instances of the microservice

66

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/XPath
https://www.smarty.net/

URL_Filter(.xml) to be imported first in order to have relevant information. So Web_Filter
microservice as an import rand higher than URL_Filter, so that during the import
import/synchronize process, URL_Filter microservice will be imported first in MSactivator™
database so they can be read during the post import of Web_Filter microservice in order to enrich
the instance with detailed values/info.

Instead of displaying/proposing to enter meaningless numbers as identifier of URL filtering rules,
the post import , the Web filtering microservice will display the URL filter details gathered during
the post import. In order to read the MS instance, the syntax is simply based on the microservice
definition file name.

In the below Web_Filter post import example, by using the foreach loop on the variable
$URL_Filter, we can seek MSactivator™ microservice database instance.

{foreach $URL_Filter as $filter}
 {if isset($params.filter_id) && $params.filter_id == $filter.object_id}
 {assign_object_variable var="filter_id" value=$filter.object_id}
 {assign_object_variable var="filter_name" value=$filter.filter_name}
 {if !empty($filter.urls)}
 {foreach $filter.urls as $index => $url}
 {assign_object_variable var="urlfilter.{$index}.url_id" value=$url
.url_id}
 {assign_object_variable var="urlfilter.{$index}.url" value=$url.url}
 {assign_object_variable var="urlfilter.{$index}.action" value=$url
.action}
 {assign_object_variable var="urlfilter.{$index}.type" value=$url.type}
 {/foreach}
 {/if}

67

 {break}
 {/if}
{/foreach}

Read

The Read function can be implemented to allow the user or the API to generate a text file based on
a Smarty template and the microservice instance variables store in the database.

Example

This example generate a text based on a template and the microservice instance variables values as
stored in the database

config router static
edit {$routing.$object_id.object_id}
set dst {$routing.$object_id.ip_dest} {$params.mask}
set gateway {$routing.$object_id.gw}
set device {$routing.$object_id.interface}
{if empty($routing.$object_id.comment)}
unset comment
{else}
set comment "{$routing.$object_id.comment}"
{/if}
next
end

Another template could be:

 object_id : "{$routing.$object_id.object_id}"
 ip_dest : "{$routing.$object_id.ip_dest} "
 mask : "{$params.mask}"

68

 gateway : "{$routing.$object_id.gw}"
 interface : "{$routing.$object_id.interface}"

Constraint

In most cases, the constraint definition is straight forward when defining a microservice variable.
Based on the type of the variable, the UI will check if the provided value is consistent with the type.
For example if the type is "IP Address", the format of the value should be an IP address.

In some cases, though, the constraint is more complex and may depend on a combination of several
conditions that can involve multiple variables.

For example, the 5 variables params.av, params.webfilter, params.spamfilter, params.ips, and
params.scanport have the following dependencies:

• if params.av is set then params.scanport must be set

• if params.webfilter is set then params.scanport must be set

• if params.spamfilter is set then params.scanport must be set

• if params.ips is set then params.scanport is not mandatory

To make things simpler, it is possible to add a custom constraint evaluation to the object definition.

The custom constraint is implemented as a smarty template:

{if !empty($params.av)
 OR !empty($params.webfilter)
 OR !empty($params.spamfilter)}
 {if empty($params.scanport)}
 Scan Port must be set
 {/if}

69

{/if}

Create, Update or Delete Execution flow

The diagram below shows the flow of execution when one of the Create, Update or Delete function
is executed by the REST API (directly or from the UI)

1. A command (CREATE here) is send via web service.

2. The microservice name is used to retrieve the associated XML definition file associated to the
managed entity.

70

3. The command name is used to find the <command> section in the XML definition file.

4. The variables {$object_id} and {$params} are created to parse the template of the XML
definition file.

5. Variables from the database are also created to parse the template of the XML definition file.

6. The template generates device commands used to perform the requested command on the
object.

7. The device commands generated are returned to the web service call.

8. Optionally the device commands generated are applied to the managed entity.

9. Optionally the object extracted from the web service call is stored in the database.

XML Microservice Editor

Overview

XML microservice are used to manage entities that expose a REST API that return a response
formatted in XML or for Adapter that are not supporting JSON microservice and JsonPath.

To create a XML microservice, you need to check XML for the configuration type when creating a
new microservice

do not try to change the configuration type of an existing microservice as this is
not supported.

The functions Create, Update and Delete

Create and Update

These functions will call the REST API design to create or update the managed entity configuration.

For instance, the REST API to create a new tenant is

HTTP Request: /operator/{$prefix}

Method: POST

Parameter Name Type Description

name String the name of the tenant

Example:

POST /api/tenancy/tenants/

In case you need to pass in a JSON payload with the parameters, the microservice Create will look
like this.

71

Delete

Import

72

The main difference between the CLI and REST (Json/XML) Microservice definition is the
implementation of the functions Create/Update/…

CLI Microservice definition is covered in the documentation about the CLI microservice editor.

This documentation uses the Netbox REST adapter and the Netbox REST API to illustrate the design
of XML Microservice.

JSON Microservice Editor

Overview

JSON microservice are used to manage entities that expose a REST API that returns a response
formatted in JSON.

To create a JSON microservice, you need to check JSON for the configuration type when creating a
new microservice.

73

https://github.com/openmsa/Adaptors/tree/master/adapters/rest_netbox
https://netbox.readthedocs.io/en/stable/rest-api/overview/

do not try to change the configuration type of an existing microservice as this is
not supported.

The functions Create, Update and Delete

Create and Update

These functions will call the REST API design to create or update the managed entity configuration.

For instance, the REST API to create a new tenant is

HTTP Request: /operator/{$prefix}

Method: POST

Parameter Name Type Description

name String the name of the tenant

Example:

POST /api/tenancy/tenants/

In case you need to pass in a JSON payload with the parameters, the microservice Create will look
like this.

74

Delete

Import

75

The main difference between the CLI and REST (Json/XML) Microservice definition is the
implementation of the functions Create/Update/…

CLI Microservice definition is covered in the documentation about the CLI microservice editor.

This documentation uses the Netbox REST adapter and the Netbox REST API to illustrate the design
of XML Microservice.

CLI Microservice Editor
You can use the the microservice editor UI to create or update a microservice.

To create or edit a microservice you can go to the "Integration" section and select the Microservice
tab

76

https://github.com/openmsa/Adaptors/tree/master/adapters/rest_netbox
https://netbox.readthedocs.io/en/stable/rest-api/overview/

CLI microservice implementation

The Microservice API is made of several functions that can be implemented. It is not mandatory to
implement all the functions, this will depend on your requirements and can be done incrementally.

The functions Create, Update and Delete

Create and Update

The CLI commands to create or delete an iptable rule to allow or block a port and an IP are:

sudo iptables -A INPUT -p tcp --dport <PORT TO BLOCK> -s <IP TO BLOCK> -j DROP
sudo iptables -A FORWARD -p tcp --dport <PORT TO BLOCK> -s <IP TO BLOCK> -j DROP

this is how it would be implemented in the Create function of the Microservice

sudo iptables -A INPUT -p tcp --dport {$params.dst_port} -s {$params.src_ip} -j DROP
sudo iptables -A FORWARD -p tcp --dport {$params.dst_port} -s {$params.src_ip} -j
DROP

As you can see the parameters are prefixed with $params. and this is the reason why the variable
editor section will automatically add $params. to the variable.

The implementation of the Update will be similar and will of course depend on the CLI syntax.

77

Delete

The deletion of the iptables INPUT and FORWARD rules is executed with the CLI command below:

sudo iptables -D INPUT -p tcp --dport <PORT TO BLOCK> -s <IP TO BLOCK> -j DROP
sudo iptables -D FORWARD -p tcp --dport <PORT TO BLOCK> -s <IP TO BLOCK> -j DROP

This will be implemented as:

sudo iptables -D INPUT -p tcp --dport {$simple_firewall.$object_id.dst_port} -s
{$simple_firewall.$object_id.src_ip} -j DROP
sudo iptables -D FORWARD -p tcp --dport {$simple_firewall.$object_id.dst_port} -s
{$simple_firewall.$object_id.src_ip} -j DROP

The syntax {$simple_firewall.$object_id.dst_port} provides a way to access the Microservice
variable values in the MSactivator™ configuration database.

The convention is as follow:

{$<MICROSERVICE NAME>.$object_id.<VARIABLE NAME>}

In our case:

• MICROSERVICE NAME ⇒ simple_firewall

• VARIABLE NAME ⇒ dst_port

• MICROSERVICE NAME is the name of the Microservice file without the .xml extension.

Example

simple_firewall.xml ⇒ simple_firewall

78

The function Import

This regex will extract the firewall parameter and store them in the database

@(?<object_id>\d+) DROP tcp -- (?<src_ip>([0-9]{1,3}\.){3}[0-
9]{1,3})[^:]+:(?<dst_port>\d+)@

the variable object_id is a mandatory parameter and will be used to identify the
Microservice instance in the database.

Testing the microservice

The Microservice is ready to be tested.

Make sure that you can add and delete a policy rule, that it’s reflected on the Linux firewall, and
that the parameters are also properly synchronised after a call to Create or Delete.

You can also add some iptables rules manually on the Linux CLI and run a configuration
synchronization to make sure that your manual changes are properly imported.

79

Import function: tips and examples

Below you’ll find some example of CLI based configuration and the regex that can be used to
extract the variables.

These are only provided as example and you may have to modify them to match you needs.

To help with testing and validating your regular expression, there are many online tools. We, at
UBiqube, usually use this one: https://regexr.com/3bhgg

Example 1 : Fortigate, get the syslogd3 config

CLI command: how full-configuration log syslogd3 setting

result:

config log syslogd3 setting
 set status enable
 set server "91.167.210.90"
 set mode udp
 set port 514
 set facility local7
 set source-ip ''
 set format default
end

Here is the Import function implementation to extract the object_id, the status, the server IP and
the port.

80

https://regexr.com/3bhgg

config regex instance key value

config log syslogd3
setting

config log
(?<object_id>\S+)
setting

syslogd.syslogd3.object_
id

syslogd3

set status enable \s*set status
(?<syslogd3_status>\S+)

syslogd.syslogd3.syslog
d3_status

enable

set port 514 \s*set port
(?<syslogd3_port>\d+)

syslogd.syslogd3.syslog
d3_port

514

set server
"91.167.210.90"

\s*set server
"(?<syslogd3_server_ip>
[^"]+)"

syslogd.syslogd3.syslog
d3_server_ip

91.167.210.90

Microservice Variables
Variables are usually defined to hold the parameters to be passed to a microservice. For instance,
the port and IP address variables to block for a firewall policy. Variables can also be used to display
user information that is not meant to be used for configuring the managed entity.

Setting variables is done from the section "Variables" on the microservice editor screen.

When you create a new microservice, the variable object_id, which is mandatory, will be set and
cannot be deleted. It can be edited to set its type and other advanced properties.

All variables are referenced with the prefix $params which is automatically set in the variable editor
screen and when a variable has to be referenced in one of the microservice functions, you need to
use the syntax {$params.your_variable} (see below for more examples).

By default the type of a variable is String but other types are supported such as Integer, Boolean,
Password, IpAddress, ObjectRef,…

81

Overview

The variables are usually defined to hold the parameters to be passed to the microservice. For
instance, the port and IP address variables to block for a firewall policy. Variables can also be used
to display user information that is not meant to be used for configuring the managed entity.

Setting different types for variables will affect the way the microservice end user form, for creating
or updating it, will render.

For instance, the type boolean will render the variable with true/false radio buttons.

Default settings

When creating or editing a variable, there are some information that need to be provided in the
"Default" section.

Variable

Name of the variable to use in the implementation of the microservice or when calling the REST
API.

Type

The type of the variable should be one from the list below

String

The default type for a variable, it will accepts any value and the UI renders it as a input field
without any specific validation with regards to the value set.

82

Boolean

Accepts a value of true or false, the UI will render it as a checkbox.

Integer

Represents a numerical value, the UI will render it as an input field restricted to integer.

Password

This data type represents a multi-character value that is hidden from plain sight (i.e. the value is
represented as asterisks instead of clear text).

IP address and IP mask, IPv6 address

 not supported yet

This data type will enforce data validation against IP address formats.

Composite

Provide the means to add control over the behavior of the microservice user form.

It can be used, for instance, to show/hide part of the form based on the value of another component
of the form.

Link

Display a URL in the user form, for instance to link to some documentation on a web server.

It is usually used in read-only mode with the URL set as the default value of the variable

File

 not supported yet

This type is useful for allowing a user to select a file.

Auto Increment

Maintains an incremental counter within the instances of a microservice for a managed entity. This
is useful for managing the object_id.

Table 2. Specific advanced parameters

Increment an integer to define the increment step

Start Increment the initial value for the variable

Microservices sharing the same increment a list of microservices that are also using the
same variable and need to share a common
value.

83

Device

This type is used to allow the user to select a managed entity and pass it’s identifier to the
implementation of the microservice.

Index

 not supported yet

Microservice Reference

Reference an other microservice from a microservice and use the referenced microservice variable
value.

By default the value used from the referenced microservice is the object_id.

The referenced microservice should be configured in the "Advanced" section:

"Microservice Reference" field: enter the name of the microservice to reference. The form field will
provide the list of possible microservice to choose from based on the the input value. It is possible
to select more that one microservice in order to import values from different part of the
configuration imported by the referenced microservice.

Filtering with remote and local variables

You can optionnaly controle the values that matches between the local microservice and the remote
one (the one which is referenced).

This works as filtering: it searches the value for local variable and shows the rows which match to
the remote.

This is useful if the values to be selected from the referenced microservices have to match the local
variables.

Example:

As an example, let’s consider 2 microservices, the first one to configure addresses and the second
one to configure group of addresses. The group of addresses will be referencing the addresses.

An address is composed of an IP and a mask and is associated to an interface. A group of addresses
will be composed to multiple addresses but the group of address is also associated to an interface.

In this use case, when a group of address is associated to an interface, each addresses selected must
be associated to the same interface.

In the screenshot below we can see that "grp1" is associated to interface "port1" and "grp2" is
associated to "port2"

84

The address group microservice variable "Member" is typed as a "Microservice Reference" that
points to the address microservice:

In this case, when creating an address group instance, the values available for the variable
"$params.members.0.member" will be filtered so that the only one available are the ones with a
match between the local variable value and the remote variable value.

If "port1" is selected for the "Associated Interface" then only "addr_port1" will be listed

85

If not filtering is used (by default):

Display Name

The display value for the variable name.

Description

An optional description of this variable.

Advanced settings

Depending on the selected type, some advanced parameters may be differ.

86

Setting Description

Default Value the default value that will be used when creating
a new microservice instance

Values for Drop-down a list of possible value the user can choose from

Allow adding free value available if some value(s) were provided for
drop-down

Mandatory a value has to be provided for this variable

Read only variable the value cannot be edited

Section Header group some variables in the microservice
console (see below)

Group variable group some variables in the auto-rendered UI
for creating or editing a microservice (see below

Show only in edit view hide the variable from the microservice console

Group Variables

You can group the variables in the microservice console by setting a section header name. The UI
will gather the columns under a common header

Section A and section B

87

#group_variables
#group_variables

It is also possible to group variables to provide a better user experience when creating or editing a
microservice and go from a flat view

To a more organized view

Group A and group B

88

Array settings

When you are dealing with variable arrays, these options will let you control the possible actions a
user can have over the array.

Variable arrays

To create a variable array, you need to follow a precise naming convention: $params.<ARRAY
NAME>.0.<ELEMENT NAME>. The 0, is the separator that will allow the UI and the configuration engine
that this variable is an array.

a variable array with 2 elements

89

This type of variables should be used when extracting configuration with an array variable
extractor in the Import function of the microservice.

Microservice Template with PHP Smarty

Smarty templates

The Smarty templates are used to generate output using variables and control structures like
if/then/else conditional branches or for/each loops.

The output is used to configure the managed entities or retrieve data from the database.

Parameter substitution in microservice

Whether you are developing a CLI or and XML (REST) based microservice, the CoreEngine will rely
on parameter substitution to generate the configuration or the call to the REST API.

The parameters, coming from the web UI or the REST API are passed to the template engine as a
JSON payload.

For ClI microservices, the parameters, extracted from the JSON payload will be used to generate the
piece of configuration to apply to the managed entity (this is the role of the adapter).

90

adapter_development.pdf

For XML/REST, the parameters are used to build the REST API call, either by updating the path
and/or by updating the payload

Variables

From database

For an object object_name, the instance instance_id can accessed with the syntax

{$object_name.instance_id}

Object fields can be accessed via

91

{$object_name.instance_id.field_name}

Array values can be accessed with the syntax

{$object_name.instance_id.array_name.array_index}

From parameters

Variables generated from parameters are accessed by using the syntax

{$params.name}

Special case of object_id

{$object_id}

can also be used. It corresponds to the object ID given in the JSON parameter object.

The {$object_id} variable can also be used to retrieve an object instance from the database.

{$object_name[$object_id|object_id]}

is the instance of object_name corresponding to the object ID given in parameters.

Smarty has a specific meaning for the '.' dot character, so it is not allowed in $object_id variable. In
order to solve this issue, it is better to use {$params.object_id} instead of {$object_id} when
generating the configuration.

In order to reference the value of another object, the Smarty modifier '|object_id' can be use.

Example:

v2.0/subnets/{$subnets[$params.object_id|object_id].uuid}

will fetch the uuid parameter of the 'subnets' object having $params.object_id id.

Control Structures

Control structures are used to generate output using complex data, like list of objects, or optional
parts.

Conditionals

92

{if},{elseif},{else}

{if} statements in Smarty have much the same flexibility as PHP if statements, with a few added
features for the template engine. Every {if} must be paired with a matching {/if}. {else} and {elseif}
are also permitted. All PHP conditionals and functions are recognized, such as ||, or, &&, and,
is_array(), etc.

The following is a list of recognized qualifiers, which must be separated from surrounding elements
by spaces. Note that items listed in [brackets] are optional. PHP equivalents are shown where
applicable.

Qualifier Alternates Syntax Example Meaning PHP Equivalent

== eq $a eq $b equals ==

!= ne, neq $a neq $b not equals !=

> gt $a gt $b greater than >

< lt $a lt $b l less than <

>= gte, ge $a ge $b greater than or
equal

>=

⇐ lte, le $a le $b less than or equal ⇐

=== $a === 0 check for identity ===

! not not $a negation (unary) !

% mod $a mod $b modulous %

is [not] div by $a is not div by 4 divisible by $a % $b == 0

is [not] even $a is not even [not] an even
number (unary)

$a % 2 == 0

is [not] even by $a is not even by
$b

grouping level
[not] even

($a / $b) % 2 == 0

is [not] odd $a is not odd [not] an odd
number (unary)

$a % 2 != 0

is [not] odd by $a is not odd by $b [not] an odd
grouping

($a / $b) % 2 != 0

example

telephony-service
{if isset($params.ntp_server_ip_address) && $params.ntp_server_ip_address != ''}
 ntp-server {$params.ntp_server_ip_address}
{/if}
{if isset($params.maximum_ephones) && $params.maximum_ephones != ''}
 max-ephones {$params.maximum_ephones}
{/if}
{if isset($params.maximum_dial_numbers) && $params.maximum_dial_numbers != ''}

93

 max-dn {$params.maximum_dial_numbers}
{/if}
{if isset($params.source_ip_address) && $params.source_ip_address != ''}
 ip source-address {$params.source_ip_address} port {$params.source_port} {if
isset($params.secondary_ip_address) && $params.secondary_ip_address != ''} secondary
{$params.secondary_ip_address} {/if}
{/if}

Loops

{foreach},{foreachelse}

{foreach} is used to loop over an associative array as well a numerically-indexed array, unlike
{section} which is for looping over numerically-indexed arrays only.

The syntax for {foreach} is much easier than {section}, but as a trade off it can only be used for a
single array. Every {foreach} tag must be paired with a closing {/foreach} tag.

Attribute Name Type Required Default Description

from array Yes n/a The array you are
looping through

item string Yes n/a The name of the
variable that is the
current element

key string No n/a The name of the
variable that is the
current key

• Required attributes are from and item.

• {foreach} loops can be nested.

• The from attribute, usually an array of values, determines the number of times {foreach} will
loop.

• {foreachelse} is executed when there are no values in the from variable.

telephony-service
{foreach from=$params.tftp_load item=tftp}
 load {$tftp.phone_type} {$tftp.firmware_file_name}
{/foreach}

Sorting

Use the smarty function 'sortby_typed' to sort arrays by key.

'sortby_typed' take a list of comma separated keys with a type (int or string) for each one.

94

{foreach $params.access_list|@sortby_typed:"acl_seq_number:int" as $acl} ①
 {$acl.acl_seq_number} {$acl.acl_rule} {$acl.acl_protocol} {$acl.acl_src}
{/foreach}

① sort by the key 'acl_seq_number' and convert the key values to integer

Variable assignment

Local variable

Under certain circumstances it is necessary to use a local temporary variable to generate the
output.

{assign}

{assign} is used for assigning template variables during the execution of a template.

Attribute Name Type Required Default Description

var string Yes n/a The name of the
variable being
assigned

value string Yes n/a The value being
assigned

!
{assign var='sdid' value=$SD->SDID}
{foreach from=$VOIP_PROFILE->SD_list.$sdid->MAIL_BOX_list item=mbox}
!
voicemail mailbox owner {$mbox->MBOX_USERNAME}
login pinless any-phone-number
end mailbox
{/foreach}
!

Microservice variable

It is also possible to assign a value to a microservice variable.

This is only possible in the post-import section.

{if isset($params.syslogd_server_ip) && $params.syslogd_server_ip != ""}
 {assign_object_variable var="_syslogd_server_ip" value="{$params
.syslogd_server_ip}"} ①
{/if}

95

① assign the value of $params.syslogd_server_ip to $params._syslogd_server_ip

Common problems

The templates are extracted from the XML definition files, and evaluated with Smarty. Some
behavior must be known prior to developing templates.

XML non supported characters

Templates within XML definition files must not contain characters like < or >. You’ll get an error:

Bad format for local file due to XML parsing error.

<command name="CREATE">
 <operation>
you can't "write" if ({$foo} < 1) in your templates
 </operation>
</command>

Templates must be embedded into a <[CDATA[]]> tag to avoid most of the problems of non-
supported characters.

<command name="CREATE">
 <operation><[CDATA[
 you can "write" if ({$foo} < 1) in your templates
]]></operation>
</command>

Extra line break and space characters

The templates reflects what is written within the <operation> and </operation> tags, that’s why it is
recommended to write

When a Smarty command like {if} {foreach}, or also an ending tag like {/if} {/foreach}, is
immediately followed by a line break, then this line break is REMOVED by Smarty. This does NOT
apply to variables.

example

96

In this case the

{if} ... {/if}

The line should have been split.

!
{assign var='sdid' value=$SD->SDID}
{foreach from=$VOIP_PROFILE->SD_list.$sdid->MAIL_BOX_list item=mbox}
!
{if isset($mbox->description)}
 description {$mbox->description}
{/if}
voicemail mailbox owner {$mbox->MBOX_USERNAME}
login pinless any-phone-number
end mailbox
{/foreach}
!

Sometimes the line cannot be split, the solution is to either add a space character at the end of the
line, if it remains correct for the configuration, or add an extra new line (one line left blank).

Syntax errors

The Smarty syntax is very strict, for example an error in the template

97

will return

Operation Failed

Currently, the only way to find the root cause is to check the file

/opt/sms/logs/smsd.log

An example of an error found in the log

2011/08/12:12:28:42:(D):smsd:ZTD66206:JSCALLCOMMAND:: Managing object test
2011/08/12:12:28:42:(D):smsd:ZTD66206:JSCALLCOMMAND:: compute file
/opt/fmc_repository/CommandDefinition/CISCO/MyTemplates/test.xml for key test
2011/08/12:12:28:42:(D):smsd:ZTD66206:JSCALLCOMMAND:: ELEMENT CREATE found
2011/08/12:12:28:42:(E):smsd:ZTD66206:JSCALLCOMMAND:: PHPERROR: [256] Smarty error:
[in var:2313098ec4aae945b1a201eb153cf778 line 3]: syntax error: 'if' statement
requires arguments (Smarty_Compiler.class.php, line 1270) error on line 1093 in file
/opt/sms/bin/php/smarty/Smarty.class.php

This indicates that in the file

CommandDefinition/CISCO/MyTemplates/test.xml

for the command

CREATE

an error occured in the 3rd line of the template

syntax error: 'if' statement requires arguments

Usage of the {$object_id} variable

The {$object_id} variable is used to reference objects into the database and is used as a variable
name in Smarty in the template resolution.

When the parameters are passed to the engine the JSON payload is:

{"interface":{"Interface-Service-engine0/0":{"ip_address":"1.2.3.4"}}}

The variables values are:

• {$object_id} ⇒ "Interface-Service-engine0/0"

98

• {$params.ip_address} ⇒ "1.2.3.4"

When writing a template {$object_id} can be used in expressions like
{$interface.$object_id.ip_address} to retrieve database values.

The CREATE template looks like:

<command name="CREATE">
 <operation>
 <![CDATA[
interface {$object_id}
{if isset($params.dot1qtrunk) && $params.dot1qtrunk == 'Yes'}
 switchport trunk encapsulation dot1q
 switchport mode trunk
{/if}
{if isset($params.vlan_id) && $params.vlan_id != ''}
 encapsulation dot1Q {$params.vlan_id}
{/if}
{if isset($params.ip_address) && $params.ip_address != ''}
 ip address {$params.ip_address} {$params.subnet_mask}
{/if}
{if $object_id|stristr:"Ethernet" && !$object_id|stristr:"."}
{if isset($params.enable_nbar) && $params.enable_nbar != '' && $params.enable_nbar ==
'Yes'}
 ip nbar protocol-discovery
{/if}
{if isset($params.enable_media_type) && $params.enable_media_type != '' &&
$params.enable_media_type == 'Yes'}
 max-reserved-bandwidth 100
 media-type sfp
{/if}
{if isset($params.description) && $params.description != ''}
 description {$params.description}
{/if}
...
no shutdown
!]]>
 </operation>
</command>

Skip the parsing of the {$ } structure

Normally, the {$ } structure is used in the microservices template to specify the variables to be
parsed by the Smarty templating engine (ex: {$parms.my_variable}) but in some case, you might
need this structure to be ignored by the parser because it is part of the actual configuration to build
for the managed entity.

This is where you need to use the keywords ldelim (left delimiter)and rdelim (right delimiter).

For example consider the following pattern in the "Microservice Configuration" section of the REST

99

based Microservice definitions:

"subUnit": "{$v_vni-0-0_WAN-1__unit}"

Here we want to use the '{' and '}' characters in their literal values and have to specify not to be
parsed. We can do this by replacing '{' with '{ldelim}' and replacing '}' with '{rdelim}' and hence for
the line mentioned above we have to change it as shown below:

"subUnit": "{ldelim}$v_vni-0-0_WAN-1__unit{rdelim}"

Getting Started with Microservices Design

Overview

This tutorial explores the design and development of a Microservice.

Microservices can be used to manage a wide variety of services on numerous types of devices, such
as:

• network equipment (routers, switches, UTM, etc.)

• virtualization infrastructure managers (VMWare, AWS, Openstack, etc.)

• Linux servers

Lab setup

The first step in Microservice design and development is to have a device to manage.

This tutorial assumes you have a properly configured, running MSactivator™.

If you have followed the quickstart guide you should have a running MSactivator™ with a Linux
managed entity, created and activated.

Microservice design

As a first example of Microservices, we will start with managing this Linux Managed Entity.

100

../admin-guide/installation.pdf

On Linux, the CLI command to list the users is: cat /etc/passwd.

To create a new user use the command: useradd

and to delete a user use the command: userdel.

[root@managed-linux ~]# cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
...
sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
oprofile:x:16:16:Special user account to be used by
OProfile:/home/oprofile:/sbin/nologin
tcpdump:x:72:72::/:/sbin/nologin

The list of users in /etc/passwd contains the system users that we want to exclude from the scope of
the Microservice. We will cover this later in this tutorial.

Create a new microservice

Click on the "Integration" from the left menu, select the tab "Microservices" and click on "Create
Microservice"

Import the users with the IMPORT function

The result of the CLI command cat /etc/passwd is composed of a line with the format:

101

1. Username: Used when user logs in. It should be between 1 and 32 characters in length.

2. Password: An "x" character indicates that an encrypted password is stored in /etc/shadow file.
Please note that you need to use the passwd command to compute the hash of a password typed
at the CLI, or to store/update the hash of the password in /etc/shadow file.

3. User ID (UID): Each user must be assigned a user ID (UID). UID 0 (zero) is reserved for root. UIDs
1-99 are reserved for other predefined accounts. UIDs 100-999 are reserved by the system for
administrative and system accounts/groups.

4. Group ID (GID): The primary group ID (stored in /etc/group file)

5. User ID Info: The comment field. This allows you to add extra information about the users, such
as user’s full name, phone number etc. This field is used by finger command.

6. Home Directory: The absolute path to the directory the user will be in when they log in. If this
directory does not exists then users directory becomes /.

7. Command/Shell: The absolute path of a command or shell (/bin/bash). Typically, this is a shell.
Please note that it does not have to be a shell.

Now let’s build the IMPORT function with the parsers to extract the information listed above.

Firstly, we have to decide how the Microservice ID (the mandatory variable name "object_id") will
be extracted. In this case, since the username is unique on Linux, the obvious choice is to use the
username field as the object_id.

The regular expression to extract the fields from the result of cat /etc/passwd is:

@(?<object_id>[^:]+):(?<password>[^:]+):(?<user_id>[^:]+):(?<group_id>[^:]+):(?<commen
t>[^:]*):(?<home_dir>[^:]+):(?<shell>[^:]+)@

it may be useful to use an online regular expression tester when developing and
testing regular expressions. One such online tester can be found here:
http://lumadis.be/regex/test_regex.php (see reference below)

Once validated, this regular expression can be used in the field "Micro service identifier extractor"
of the IMPORT function builder:

102

http://lumadis.be/regex/test_regex.php

the variables such as object_id, password, have to be created in the variable
section of the Microservice.

Variable creation

Variable are user to store the Microservice instance state in the database.

To create a variable, you need to go to the "Variables" section in the left menu and click "Create
Variable".

When refering to a variable in the Create/Update or Delete functions, you will
always have to prefix them by $params. (see below). This is why the UI to create the
variable is showing the string "$params."

103

For more detail on Microservice variables and type, you can go to the documentation about the
microservice editor

Run the first test

In order to use your microservice, you need to associate it to a managed entity with a deployment
setting and use the synchronization button from the microservice console under the tab
"Configure".

Save your work, run the synchronization, and view at the result.

Add and remove users with the CREATE and DELETE functions

On Linux, the CLI command to add a user is:

useradd -m -d HOME_DIR -c COMMENT -p PASSWORD LOGIN

and to delete a user is:

userdel -f -r LOGIN

Since it is possible to set the password as a parameter of the user creation, you need to modify the
definition of the variable "password" and make it visible and mandatory (but only in the edit view).

You are now ready to implement the CREATE:

useradd -m -d {$params.home_dir} -c "{$params.comment}" -p {$params.password} {
$params.object_id}

104

and the DELETE:

userdel -f -r {$users.$object_id.object_id}

the use of the syntax {$users.$object_id.object_id} in the implementation of the
DELETE.

$users is the name of the Microservice definition file as created in the repository: users.xml. This
syntax is used to get values from the MSactivator™ database, where Microservice instances are
stored. The syntax has to be used when implementing a DELETE because the DELETE must delete
the entry from the database AND remove the configuration from the device (in this case we want to
delete a user).

Going further

With this simple implementation you can manage users on a Linux system, but there are some
additional use cases that you may want to address:

• Is it possible to ignore the system users when importing (for example: bin, daemon, adm,…)?

• What if no comment is provided?

• What if no home dir is provided?

How to ignore the system users

In order to ignore system users during the import, you have to find criteria to help differentiate
system users from the users created by the system admin. You can chose to ignore all users that do
not have the home directory under /home. The regular expression would then look like:

@(?[^:]+):(?[^:]+):(?[^:]+):(?[^:]+):(?[^:]*):(?/home/.+):(?[^:]+)@

105

This regular expression will exclude all users that do not have a home directory under /home, but
the system users below will still be imported:

oprofile:x:16:16:Special user account used by OProfile: /home/oprofile:/sbin/nologin

Since the shell is not part of the parameters that we have exposed in the creation form, you can
decide to import the user that have /bin/bash as shell:

@(?[^:]+):(?[^:]+):(?[^:]+):(?[^:]+):(?[^:]*):(?/home/.+):/bin/bash@

In this case, the variable shell is no longer needed, so you can remove it from the list of the
variables. You also have to update the CREATE function to make sure that the home dir will always
be under /home, and you have to make sure that the variable home_dir is read only.

useradd -m -d /home/{$params.object_id} -c "{$params.comment}" -p {$params.password}
{$params.object_id}

How to handle optional empty variables

The comment is an optional parameter, so you need to make sure that the execution of the CLI
command useradd will not fail if no comment is passed as a parameter.

This can be achieved with a bit of scripting in the CREATE function:

{if empty($params.comment)}
useradd -m -d /home/{$params.object_id} -p {$params.password} {$params.object_id}
{else}
useradd -m -d /home/{$params.object_id} -c "{$params.comment}" -p {$params.password}
{$params.object_id}
{/if}

Getting the sources

The source of this tutorial is available on GitHub at https://github.com/openmsa

Microservice Order Command REST API

Type of Execution

Generate Configuration

This execution type is used to preview the configuration to be generated, before storing it in the
database or applying it to the device.

The configuration generated by the command is returned to the caller, no other action is

106

https://github.com/openmsa/Microservices/tree/master/Tutorials/LINUX/Generic/Tutorial1

performed.

REST API syntax

POST /ordercommand/get/configuration/{deviceId}/{commandName}
body : microservice parameters formatted as JSON

• deviceId is the ID (long) of the device to manage.

• commandName is the command to apply to the device.

• objectParameters are the JSON formatted list of objects and attributes.

Example

The call below is using the Microservice vlan.xml to do simple VLAN management on a Cisco
Catalyst IOS

curl -u ncroot:NCROOT_PWD -XPOST http://MSA_IP/ubi-api-
rest/ordercommand/get/configuration/311/UPDATE -d '{
 "vlan": {
 "4001": {
 "name": "MyVlan4001",
 "ports": "Fa0\/11",
 "object_id": "4001",
 "status": "active"
 }
 }
}'

Where:

MSA_IP is the IP address of MSactivator™.

This will return:

{
 "commandId": 0,
 "message": "vlan 4002\nname MyVlan4002\n",
 "status": "OK"

107

}

Store Configuration

This execution type is used to store the configuration objects in the database.

The configuration generated by the command is returned to the caller, and the generated objects
are stored in the database.

Web service syntax:

PUT /ordercommand/store/configuration/{deviceId}/{commandName}
body : microservice parameters formatted as JSON

• deviceId is the ID (long) of the device to manage

• commandName is the command to apply to the device

• objectParameters are the JSON formatted list of objects and attributes.

Example

The call below is using the Microservice vlan.xml to do simple VLAN management on a Cisco
Catalyst IOS

curl -u ncroot:NCROOT_PWD -XPUT http://MSA_IP/ubi-api-
rest/ordercommand/store/configuration/311/CREATE -d '{
 "vlan": {
 "4020": {
 "name": "MyVlan4020",
 "ports": "Fa0\/11",
 "object_id": "4020",
 "status": "active"
 }
 }
}'

Where:

108

NCROOT_PWD is the password to the MSactivator™.

It will return:

{
 "commandId": 0,
 "message": "vlan 4020\nname MyVlan4020\n",
 "status": "OK"
}

Execute Command

This execution type is used to store the configuration in the database and apply it to the device.

The configuration generated by the command is returned to the caller, the actions are also
performed in the database and on the device.

Executing Commands

Use the following method to trigger OrderCommand (Microservices) methods present at the
following URL:

http://MSA_IP/ubi-api-rest/ordercommand/execute/{deviceId}/{commandName}

• {deviceId}: is the device sequence number or the numeric part of the MSactivator™ Device ID

• {commandName}: can take one of the following
values: — UPDATE — IMPORT — CREATE — DELETE

109

Example

curl -u ncroot:NCROOT_PWD -XPUT http://MSA_IP/ubi-api-
rest/ordercommand/execute/311/CREATE -d '{
 "vlan": {
 "4020": {
 "name": "MyVlan4020",
 "ports": "Fa0\/11",
 "object_id": "4020",
 "status": "active"
 }
 }
}'

As shown above, the http body contains what’s called "object parameters" in general.

Root Element

The root element of the JSON body is the Microservice definition identifier. Here, the first JSON
element refers to the Microservice definition name.

In the example above it is syslogd. This is the same string that is used when creating a Microservice
definition in the Microservices builder. Hence, in the above case the Microservice was named:
syslogd.xml.

Microservice Instance JSON Object

The JSON element at the next level is the object_id of the Microservice instance, in the above case it
is: SyslogConf.

 the object_id is also passed as an instance variable.

Microservice Instance Variables

The third level of JSON elements is the instance variables, represented in a standard name-value
pair.

In this case the value of the variable {commandName} is IMPORT (import operation of
Microservice) and the http response body will contain the list of Microservice instances.

As an example, let’s say we have three instances of syslogd Microservices on the device, with
instance names:

• SyslogConf

• MSASyslogConf

• NMSSyslogconf

The response of the import will be the following JSON object, that will be part of the http response:

110

{
 "syslogd": {
 "SyslogConf": {
 "object_id": "SyslogConf",
 "syslogd3_status": "enable",
 "syslogd3_port": "514",
 "syslogd3_server_ip": "1.2.2.3"
 },
 "MSASyslogConf": {
 "object_id": "MSASyslogConf",
 "syslogd3_status": "enable",
 "syslogd3_port": "514",
 "syslogd3_server_ip": "2.3.4.5"
 },
 "NMSSyslogconf": {
 "object_id": "NMSSyslogconf",
 "syslogd3_status": "disable",
 "syslogd3_port": "514",
 "syslogd3_server_ip": "7.6.5.4"
 }
 }
}

Getting the Sources

The sources of this tutorial are available on GitHub at https://github.com/openmsa/
Microservices/tree/master/CISCO/CATALYST_IOS/VLAN

In order to use the Microservice for VLAN management, you need to use vlan.xml and
interface.xml because the vlan.xml Microservice references the interface.xml Microservice.

Microservice Order Stack Management API

Overview

This documentation describes the order stack management API.

This REST API is also used internally by the MSactivator™ portal.

Each API is described below with the REST call, a textual description, the parameters and a section
'detail'. The 'detail' section provides some insight into the inner workings of the API. For instance,
what is the database table impacted or what CoreEngine API command is being used.

The detail on the CoreEngine API command is very important because it is directly related to the
adaptor implementation for a specific vendor.

111

https://github.com/openmsa/Microservices/tree/master/CISCO/CATALYST_IOS/VLAN
https://github.com/openmsa/Microservices/tree/master/CISCO/CATALYST_IOS/VLAN

API description

Add an order to the Stack

curl --location -s -k -H "Authorization: Bearer TOKEN“ -XPUT http://MSA_IP/ubi-api-
rest/orderstack/command/{deviceId}/{commandName} -d {objectParameters}

Description

Adds a command in the stack and returns the ID of the order in the stack.

Parameters

• deviceId: the database identifier of the managed device, for example: 123.

• commandName: possible values are CREATE UPDATE IMPORT DELETE

• objectParameters: in JSON format, for example:

'{
"interface" : {
 "port2" : {
 "ip" : "1.2.4.5",
 "object_id" : "port2",
 "mask" : "255.255.255.0"
 }
 }
}'

Detail

Write into database (redsms.sd_crud_object).

Generate the configuration from the stack

curl --location -s -k -H "Authorization: Bearer TOKEN“ -XGET http://MSA_IP/ubi-api-
rest/orderstack/configuration/{deviceId}

Description

Generates the configuration based on the stacked orders for a device.

Parameters

• deviceId: the database identifier of the managed device, for example: 123.

Detail

loop on commands in the stack call SMS verb end loop

The SMS verb is equivalent to the following CLI command command:

112

sms -e JSCALLCOMMAND -i 'deviceId commandName 0' -c 'objectParameters'

with the CLI command above the parameter 0 is used along with commands such
as CREATE, UPDATE or DELETE and generate configuration without access to the
database or the device

Generates the configuration and store the configuration from the stack

curl --location -s -k -H "Authorization: Bearer TOKEN“ -XPUT http://MSA_IP/ubi-api-
rest/orderstack/configuration/{deviceId}

Description

Generates the configuration based on the stacked orders for a device and stores the configuration
items in the database.

Parameters

• deviceId: the database identifier of the managed device, for example: 123.

Detail

loop on commands in the stack
 call SMS verb
 write in database (redsms.sd_crud_object)
end loop

The SMS verb is equivalent to the following command: sms -e JSCALLCOMMAND -i 'deviceId
commandName 1' -c 'objectParameters'

In the CLI command above the parameter 1 is used along with commands such as
CREATE, UPDATE or DELETE and generate the configuration and stores the
configuration items in the database.

The device configuration is not impacted.

Generate the configuration from the stack and apply to the device

curl --location -s -k -H "Authorization: Bearer TOKEN“ -XPOST http://MSA_IP/ubi-api-
rest/orderstack/execute/{deviceId}

Description

Generates the configuration based on the stacked orders for a device and stores the configuration
items in the database and executes all the commands on the device.

Parameters

• deviceId: the database identifier of the managed device, for example: 123.

113

Detail

loop on commands in the stack
 call SMS verb
 write in database (table redsms.sd_crud_object)
 execute command on the device
end loop

The SMS verb is equivalent to the following command: sms -e JSCALLCOMMAND -i 'deviceId
commandName 2' -c 'objectParameters'

with the CLI command above, the parameter 2 is used along with commands such
as CREATE, UPDATE or DELETE which will generate the configuration, store the
configuration items in the database and apply the configuration to the device.

List the orders in the stack

curl --location -s -k -H "Authorization: Bearer TOKEN“ -XGET http://MSA_IP/ubi-api-
rest/orderstack/{deviceId}

Description

Lists the stacked orders for a device.

Parameters

• deviceId: the database identifier of the managed device, for example: 123.

Detail

Read from the database (table redsms.sd_crud_object).

Get the detail of a stack command

curl --location -s -k -H "Authorization: Bearer TOKEN“ -XGET http://MSA_IP/ubi-api-
rest/orderstack/command/{deviceId}/{commandId}

Description

Gets the detail of a stack command based on its identifier in the stack.

Parameters

• deviceId: the database identifier of the managed device, for example: 123.

• commandId: the identifier of the command in the stack.

Detail

Read in database (redsms.sd_crud_object).

114

Clear the stack

curl --location -s -k -H "Authorization: Bearer TOKEN“ -XDELETE http://MSA_IP/ubi-api-
rest/orderstack/{deviceId}

Description

Clears the stack for a device.

Parameters

• deviceId: the database identifier of the managed device, for example: 123.

Detail

Remove in database (redsms.sd_crud_object)

Delete a command from the stack

curl --location -s -k -H "Authorization: Bearer TOKEN“ -XDELETE http://MSA_IP/ubi-api-
rest/orderstack/command/{deviceId}/{commandId}

Description

Deletes a command from the stack based on the command ID.

Parameters

• deviceId: the database identifier of the managed device, for example: 123.

• commandId: the identifier of the command in the stack.

Detail

Remove in database (redsms.sd_crud_object).

Apply the configuration for a device

curl --location -s -k -H "Authorization: Bearer TOKEN“ -XPUT http://MSA_IP/ubi-api-
rest/device/push_configuration/{deviceId} -d {configuration}

Description

Perform a push configuration for a device.

Parameters

• deviceId: the database identifier of the managed device, for example: 123.

• configuration: the configuration in JSON format.

Example

{
 "configuration": "config system interface\nedit port1\nset ip 192.168.1.10

115

255.255.255.0\nend"
}

Detail

Applies the configuration to the device.

Get the status of the API push_configuration

curl --location -s -k -H "Authorization: Bearer TOKEN“ -X GET http://MSA_IP/ubi-api-
rest/device/push_configuration/status/{deviceId}

Description

Gets the status of the push configuration from the device.

Parameters

deviceId: the database identifier of the managed device, for example: 123.

Detail

Read the status from the database.

116

Adapter Development

The adapters are the "drivers" that allow the main MSactivator™'s engine to seamlessly
communicate with the Managed Entities for configuration assurance, event collection, et cetera.

Overview
The adapters are designed per vendor because they need to address the specifics of each vendor
especially when the Managed Entitie does not provide a REST management API.

The MSactivator™ provides a library of device adaptors ready to use.

The libraries are implemented in PHP which makes extension and customization easy.

How to find, install, activate the adapters
The Adapters are packaged in the MSactivator™, in the "msa_dev" container, under
/opt/devops/Openmsa_Adapters which is a git repository configured to point to github.

$ sudo docker-compose exec msa-dev bash

Many other Adapters are available on the Adapters Github repository

The installation of an Adapter is covered in this documentation: How to install an Adapter

117

https://github.com/openmsa/Adapters
https://github.com/openmsa/Adapters/blob/master/doc/Adaptor_installer.md

REST Generic adapter
The REST Generic adapter, available on Github will allow you to integrate most vendors that
exposes a REST management interface API.

This adapter is included in the mini lab.

If you need to create a new vendor based on the REST Generic adapter, you can follow this guide in
the next section

How to create a new vendor based on an existing
adapter

Overview

Some adapters were designed to be generic in order to have little dependencies with a specific
vendor.

This is the case for the REST and the Linux adapters.

• The REST Generic adapter will let you quickly integrate a new managed entity with a REST
based management API

• The Linux Generic can be used for any Linux distribution or vendor model based on Linux

but you may want to also have the vendor name and entity model both appear in the list of
supported vendor instead of REST/Generic or Linux/Generic.

Doing so will allow you to filter the microservice and deployment setting based on the vendor name
and model name.

This will ease the organization of your integration files.

How to do it

Let’s assume that you want to add vendorA / modelX to the list of supported vendors.

You will need an access to the MSactivator™ CLI of the msa_dev container.

sudo docker-compose exec msa-dev bash

 use msa_dev for MSactivator™ version 2.6 or older.

Create the new model in the Adapters github repository

If you followed the quickstart guide to install your instance of MSactivator™ the image msa_dev
contains a clone of github.com/openmsa/Adapters

118

https://github.com/openmsa/Adaptors/tree/master/adapters/rest_generic
https://github.com/openmsa/Adapters

We are going to create the new model in this local repository. Using a git repository has several
advantages such as using a working branch to track your changes and revert them if needed or
contributing to the community by creating a pull request to submit your code.

Go to the repository

cd /opt/devops/OpenMSA_Adapters/

Go to the adapter definition directory and create a new folder for your new vendor model. By
convention the folder name should be defined as <vendor name>_<model name>

cd adapters
mkdir -p vendorA_modelX/conf
cd vendorA_modelX/conf

You need to create 2 configuration files to define this new model:

• device.properties : define the adapter properties for UI display (msa-ui)

• sms_router.conf : define the adapter config for the Core Engine (msa-sms)

 In the github repository you will find lot of doc and example about these files

device.properties

VendorA / ModelX ①
manufacturer.id = 18082020 ②
manufacturer.name = VendorA
model.id = 18082020 ③
model.name = ModelX

obsolete = false

① any comment you find useful.

② select a unique, numeric ID. Your current date it a good choice.

③ same as above.

the model ID and the manufacturer ID don’t have to be identical and you can have
several models for the same vendor by using different model ID

sms_router.conf

VendorA / ModelX ①
model 18082020:18082020 ②
path rest_generic ③

① any comment you find useful.

119

https://github.com/openmsa/Adapters/blob/master/doc/

② format: <manufacturer.id>:<model.id>.

③ the path to an existing adapter code (example: rest_generic or linux_generics).

Update file owner

chown -R ncuser.ncuser /opt/devops/OpenMSA_Adapters/adapters/vendorA_modelX

Install and activate the new vendor

Exit the docker container msa-dev and restart the API container and the CoreEngine service

$ sudo docker-compose restart msa-api
$ sudo docker-compose restart msa-sms

Verify your new vendor is available

Once the services have restart, you can connect to the UI to check that a new vendor/model is listed
when you create a new managed entity.

First, verify that you can create a new managed entity and try to activate it.

During the activation, you can monitor the logs of smsd daemon from the Core Engine and check
that the adapter code being used is the one from rest_generic (or any other you may have set in
sms_router.conf above)

Login to the CoreEngine container

$docker-compose exec msa-sms bash

Set the configuration log level to DEBUG

tstsms SETLOGLEVEL 255 255

Monitor the logs with tail

tail -F /opt/sms/logs/smsd.log

It should output something similar to that. You can verify that the managed entity activation is
relying on the adapter code specified in sms_router.conf

120

2020/08/18:14:39:09:(I):smsd:BLR129:JSAPROVISIONING:: analysing verb JSAPROVISIONING
arg BLR129
2020/08/18:14:39:09:(D):smsd:BLR129:JSAPROVISIONING:: arg: 1.2.3.4 aa aa
2020/08/18:14:39:09:(D):smsd:BLR129:JSAPROVISIONING:: SMSSQL_GetSD current node name
is msa, sdid = BLR129
2020/08/18:14:39:09:(D):smsd:BLR129:JSAPROVISIONING:: Alloc SDINFO for BLR129
2020/08/18:14:39:09:(D):smsd:BLR129:JSAPROVISIONING:: RUN script
/opt/sms/bin/php/rest_generic/do_provisioning.php
2020/08/18:14:39:09:(D):smsd:BLR129:JSAPROVISIONING:: LOAD_ONCE
/opt/sms/bin/php/rest_generic/adaptor.php
2020/08/18:14:39:09:(D):smsd:BLR129:JSAPROVISIONING:: LOAD_ONCE
/opt/sms/bin/php/rest_generic/rest_generic_connect.php
2020/08/18:14:39:09:(D):smsd:BLR129:JSAPROVISIONING:: LOAD_ONCE
/opt/sms/bin/php/rest_generic/rest_generic_apply_conf.php
2020/08/18:14:39:09:(D):smsd:BLR129:JSAPROVISIONING:: LOAD_ONCE
/opt/sms/bin/php/rest_generic/rest_generic_connect.php
2020/08/18:14:39:09:(D):smsd:BLR129:JSAPROVISIONING:: LOAD_ONCE
/opt/sms/bin/php/rest_generic/provisioning_stages.php

...

2020/08/18:14:39:09:(D):smsd:BLR129:JSAPROVISIONING:: script
/opt/sms/bin/php/rest_generic/do_provisioning.php executed in 0.105652 seconds
2020/08/18:14:39:09:(D):smsd:BLR129:JSAPROVISIONING:: free SDINFO for BLR129
2020/08/18:14:39:09:(I):smsd:BLR129:JSAPROVISIONING:: ends OK

Adapter SDK
The Adapter SDK is composed of a set of PHP scripts that implement an API This API exposes
functions such as:

1. Asset management

2. Status polling

3. SshConnection

4. Provisioning

5. Update conf

6. Backup conf

7. Microservice commands (CREATE, READ, UPDATE, DELETE, IMPORT)

8. …

Custom commands

It is possible to implement new custom commands that will be callable from the MSactivator™ API
(verb JSACMD MY_COMMAND).

121

Status polling

The MSactivator™ CoreEngine daemon in charge of polling the device for availability is polld.

Logs: /opt/sms/logs/sms_polld.log

By default, polling is using ping, and for scalability and performance reasons the polling
mechanism is implemented in the C programming language. This allows the MSactivator™ to poll
several hundreds of managed entities per minute. For the devices that don’t support ping, or in case
the polling has to be customized, it is possible to implement a custom polling in a php script:

/opt/sms/bin/polld/<model>_polld.php

Custom polling example:

On Stormshield the connection to the device is tested as shown below

try
{
 global $sms_sd_ctx;
 netasq_connect();
 netasq_disconnect();
}
catch (Exception $e)
{
 netasq_disconnect();
 return $e->getCode();
}
return SMS_OK;

Asset management

The MSactivator™ CoreEngine can connect on a managed entity to fetch a set of predefined assets
such as:

1. Firmware

2. Memory

3. CPU

4. …

The specific model script retrieves information (via CLI, snmp, REST calls…) into an array. The array
is then passed to a specific callback in order to store the information in the database.

sms_polld_set_asset_in_sd($sd_poll_elt, $asset);

122

Custom asset management

It is also possible to extract custom assets. They will be stored in the database as a list of key values.

The asset mngt module uses regular expressions to extract the asset from the configuration.

These values are stored in a database that keeps the asset history.

The asset script is device specific and is located in:

/opt/sms/bin/polld/<model>_mgmt.php

Example on fortigate

Regexp:

$get_system_status_asset_patterns = array(
 'firmware' => '@Version:\s+(?<firmware>.*)@',
 'av_version' => '@Virus-DB:\s+(?<av_version>.*)@',
 'ips_version' => '@IPS-DB:\s+(?<ips_version>.*)@',
 'serial' => '@Serial-Number:\s+(?<serial>.*)@',
 'license' => '@License Status: (?<license>.*)@',
);

The regexp is executed against the result of the CLI : get system status.

Example on cisco

Regexp:

$show_ver_asset_patterns = array(
 'serial' => '@Processor board ID (?<serial>\S*)@',
 'license' => '@oftware \((?<license>[^\)]*)\)@',
 'firmware' => '@\), Version (?<firmware>[^,]*),@',
 'model' => '@^(?<model>[^(]*) \(.*with \d+K/\d+K bytes of memory@',
 'cpu' => '@^.* \((?<cpu>[^\)]*)\) processor@',
 'memory' => '@with (?<memory>\d*K/\d*K bytes) of memory@',
);

The regexp is executed against the result of the CLI show version.

Configuration management

Dialog with the managed entity

The following PHP scripts have to be created in the /opt/sms/bin/php/<model>/ directory.

This set of PHP scripts manages the dialog between the {produt_name} and the managed entity.

adaptor.php

123

Provides access to the device for device connection and configuration update.

device_connect.php

Manages the connection to the device (SSH, or REST, for example).

Microservice based configuration

PHP scripts to configure a device using objects:

<model>_command.php

Manages the OBMF specificities for the device.

device_configuration.php

Manages the main configuration methods for the managed entity (only update_conf() is used for
objects).

Template based configuration

PHP scripts to configure a device using templates:

do_update_conf.php

Generates and applies a configuration.

This task is also called automatically when the router configuration changes.

device_configuration.php

update_conf() should be enhanced to support configuration templates.

Provisioning

PHP scripts to do the initial provisioning of the device:

do_provisioning.php

Generates and applies the initial configuration on the device. This is an asynchronous task, so a
script must be provided to give an update on progress.

provisioning_stages.php

Describes all the provisioning stages. This is used to store the provisioning status into the database.

prov_lock.php

Provisioning action to lock the database for this device during the provisioning.

prov_init_conn.php

This is the initial connection test.

prov_dns_update.php

Add the device to the MSA local DNS.

prov_unlock.php

124

Provisioning action to unlock the database for this device during the provisioning.

Other Features

do_get_running_conf.php

Called by GUI (menu Monitoring → Get the running configuration).

do_staging.php

Generate the staging configuration for the device (menu General → Staging).

do_backup_conf.php

Generate a backup of the device configuration.

do_restore_conf.php

Restore a configuration backup on the device.

do_update_firmware.php

Update the firmware of a device.

If a script is not present, the corresponding operation on the MSactivator™ will give the "Function
not supported by the device" error.

Connectivity to the Devices

For the managed entities that expose a remote CLI based management interface the adapter API
requires the implementation of a class that extends SshConnection.

SshConnection connection is defined in /opt/sms/bin/php/smsd/ssh_connection.php

SshConnection extends GenericConnection defined in
/opt/sms/bin/php/smsd/generic_connection.php

SshConnection extends GenericConnection defined in
/opt/sms/bin/php/smsd/generic_connection.php

125

The class Connection

/opt/sms/bin/php/smsd/connection.php

This class is always overridden by a generic connection. It defines functions such as the "get" and
"set" attributes such as the prompt, the device IP (sd_ip_config) …

The function connect It defines the main connect functions public function
connect($connectString).

This function uses the PHP function proc_open to execute the connect command and opens file
pointers for IO. The disconnect closes the IO file pointers and leaves a clean state.

Other function

sendexpectone for sending a command to a device and getting the result back.

public function sendexpectone($origin, $cmd, $prompt='lire dans sdctx', $delay =
EXPECT_DELAY, $display_error = true)

Example (in Fortinet adaptor)

$buffer = sendexpectone(__FILE__ . ':' . __LINE__, $this, 'get system status', '\#');

The class GenericConnection

/opt/sms/bin/php/smsd/connection.php

This class implements a constructor that initiates a class attribute.

Device information is read by calling the function get_network_profile().

get_network_profile is defined for each device in a PHP file located in:

126

/opt/sms/spool/php_db_data/<device_id>.php

This PHP file is an “image” of the device configuration as stored in the database.

This design allows a quick and easy access to device configurations such as IP, credentials, interface
name, SNMP community, customer ID …

The class SshConnection

/opt/sms/bin/php/smsd/ssh_connection.php

It implements the function do_connect() that uses the function connect() from the class Connection:

parent::connect("ssh –p 22 -o StrictHostKeyChecking=no…

It uses the function expect() to check that SSH connectivity is OK (by checking that the result
contains “Permanently added”).

The class SshKeyConnection

/opt/sms/bin/php/smsd/ssh_connection.php

Allows public/private keys via SSH authentication with the device.

Example

Fortiweb WAF on AWS requires this kind of authentication.

Other examples

LinuxGenericsshConnection

/opt/sms/bin/php/linux_generic/linux_generic_connect.php

Used in do_update_conf.php

$ret = linux_generic_connect();

Implementation of ‘Update Configuration’

Base operation for implementing:

1. The initial provisioning

2. The template-based configuration

3. The Microservice CREATE/UPDATE/DELETE operation

Implemented by do_update_conf.php

127

Can be called directly by the MSactivator™ CoreEngine API, it is an asynchronous process, its status
can be monitored.

Managed entity activation (initial provisioning)

The MSactivator™ executes a set of steps to activate the device.

The steps can be customized to do additional operations.

Default steps:

Defined in provisioning_stages.php

$provisioning_stages = array(
0 => array('name' => 'Lock Provisioning', 'prog' => 'prov_lock'),
1 => array('name' => 'Initial Connection', 'prog' => 'prov_init_conn'),
2 => array('name' => 'Initial Configuration', 'prog' => 'prov_init_conf'),
3 => array('name' => 'DNS Update', 'prog' => 'prov_dns_update'),
4 => array('name' => 'Unlock Provisioning', 'prog' => 'prov_unlock'),
5 => array('name' => 'Save Configuration', 'prog' => 'prov_save_conf'),
)

Configuration backup/restore

do_backup_conf.php

Based on the verb GETSDCONF (see save_router_conf.sh) which is implemented by
do_get_sd_conf.php for each device.

do_restore_conf.php

The implementation will vary depending on the vendor.

Example

Fortinet uses TFTP and CLI execute restore config tftp. Cisco ISR first tries to SCP to flash and to
TFTP and then reboots.

Connectivity fallback mechanism

By default, the device adaptor uses secure protocols to communicate with the devices (SSH or
TFTP).

When these protocols fail (the device doesn’t support them or firewall restrictions – which might be
unlikely), there is a fallback mechanism to protocols such as Telnet or TFTP.

Example

in cisco_isr_connect.php

Microservice implementation

The implementation of the functions CREATE/READ/UPDATE/DELETE/IMPORT is specific to the

128

vendor.

 this is especially true for the IMPORT.

CREATE/READ/UPDATE/DELETE are using the functions to apply conf, this is similar to the
configuration update.

IMPORT needs to be aware of the device configuration structure.

It is necessary to provide a unified GUI to build the import but with devices that have different data
models.

for REST based managed entities, the IMPORT is usually generic since the response
is formatted in XML or JSON (cf. rest_generic)

The MSactivator™ CoreEngine API
As well as named verbs, these commands can be used to interact directly with the MSactivator™
CoreEngine from the CLI.

The can also be executed with a REST API:

HTTP Request: /sms/verb/{verb}/{deviceId}

Method: POST

Parameter Name Type Description

verb String the command
(JSAPROVISIONING,
JSCHECKPROVISIONING,
JSAUPDATECONF,…)

deviceId String the database ID of the managed
entity

COMMAND

JSAPROVISIONING Initial provisioning

JSCHECKPROVISIONING Check initial provisioning status

JSAUPDATECONF Update configuration

JSSTAGING Staging

JSGETSDCONF Get router running configuration

JSGETCONF Get router generated

The verbs are associated to specific PHP do_<verb>.php:

129

https://github.com/openmsa/Adaptors/tree/master/adapters/rest_generic

Example

tstsms JSGETSDCONF UBI132

This will retrieve the running configuration of the device and use the implementation of
do_get_running_conf.php.

Operation status feedback

During operations done by the MSactivator™ CoreEngine, especially the asynchronous ones, the
status of the ongoing operation can be set for the user by the PHP scripts. How to update the status
depends on the operation.

Initial Provisioning

Set provisioning status for a provisioning stage.

sms_bd_set_provstatus($sms_csp, $sms_sd_info, $stage, $status, $ret, $next_status,
$additionalmsg)

Configuration Update

Set the update status of the configuration update of an equipment.

sms_set_status_update($sms_csp, $sdid, $error_code, $status, $e->getMessage())

This has covered various aspects of Adapter development. If you have further questions, please
contact info@ubiqube.com for more information.

130

mailto:info@ubiqube.com

Import / Export Librairies

131

Overview
MSactivator™ provide the possibility to use git version control system to handle the libraries (BPM,
workflows and microservices) stored in the local libraries repositories under /opt/fmc_repository
in the container msa_dev.

132

https://git-scm.com/

Local libraries repositories overview
The libraries are stored in the location below

• BPM: /opt/fmc_repository/Bpmn/bpmns

• Workflow: /opt/fmc_repository/Process/workflows

• Microservice: /opt/fmc_repository/CommandDefinition/microservices

133

Configuration
By default the MSactivator™ doesn’t have any git repository configured.

To configure the git repositories, log into the Developer portal and click on "Settings" in the left
menu.

Use the "IMPORT / EXPORT" form to configure the repositories. You can choose which type of
libraries (BPM, workflow or microservice) you want to be managed by a remote git repository.

Git repository settings

Prerequisites
The remote gite repository must exist and accessible with SSH, the default branch must be set to
master

Add a repository
MSactivator™ supports one repository per type of libraries. Select the type of repository and
provide the git remote URL (only SSH is supported), the git username and password and click
"+Add".

The MSactivator™ will clone the repository under one of the locations described above and set the
status to green.

134

How it works
The CLI commands extracts below are taken from the container msa_dev, under
/opt/fmc_repository/CommandDefinition/microservices.

To connect to the container msa_dev, use docker-compose exec msa-dev bash from
where the docker-compose file is located.

initial state: no git repository configured

[root@msa_dev microservices]# ls -la
total 4
drwxr-xr-x 3 ncuser ncuser 18 Dec 15 11:59 .
drwxr-xr-x 3 ncuser ncuser 4096 Dec 15 13:49 ..
drwxr-xr-x 7 ncuser ncuser 135 Dec 15 15:17 .git

[root@msa_dev microservices]# git status
On branch master
nothing to commit, working tree clean

[root@msa_dev microservices]# git remote -v
[root@msa_dev microservices]#

new repository configured in settings

you need at least one file in the git repository before you can configure it in the UI.
We recommend that you add an empty file like README.md. On github you have
the option to do that automatically when you create a new repository

status of the git repository

[root@msa_dev microservices]# git status
On branch master
Your branch is up to date with 'origin/master'.

nothing to commit, working tree clean

[root@msa_dev microservices]# git remote -v
origin https://github.com/abr-ubiqube/my-microservice.git (fetch)
origin https://github.com/abr-ubiqube/my-microservice.git (push)

create a new microservice (Integration → Microservices)

[root@msa_dev microservices]# git status
On branch master

135

Your branch is up to date with 'origin/master'.

nothing to commit, working tree clean

[root@msa_dev microservices]# git lg
* 750f29a - 15-12-2020 15:46:10 - Updating microservice on - ncroot <jboss> (18 hours
ago)
* 7cc1d81 - 15-12-2020 15:43:39 - Updating microservice on - ncroot <jboss> (18 hours
ago)
* e73a455 - 15-12-2020 15:41:10 - Updating microservice on - ncroot <jboss> (18 hours
ago)
* 5290a81 - Initial commit with existing files <jboss> (18 hours ago)

Every updates on the libraries are committed and pushed to the remote upstream.

You can use git CLI commands to view the differences between 2 commits (git diff) and also to
revert your changes (git reset)

136

Git repository management rules
New git repository

• Files already exists in local repo

◦ No files exists upstream

▪ There won’t be any conflict and git should be configured successfully.

▪ Local files should now be available in upstream.

• Some files exists upstream

◦ It will synchronize files with the remote.

▪ If no conflict, then local files will be pushed upstream. Also, upstream files will be
available locally.

▪ If there is a conflict, error message will be thrown and git will not be configured. And
sync will not happen.

• No files exists in the local repo

◦ No files exists upstream

▪ No conflict, git should be configured successfully.PASSED

◦ Some files exists upstream

▪ There will be no conflict, and upstream files will be available locally and git will be
configured successfully.

137

REST API
The MSactivator™ provides a support for REST API. These API can be used by third-party service,
application or script to manage your MSactivator™ instance.

138

Enabling REST API support
The API is enabled by default. No additional configuration is required.

139

Authentication
When making requests to MSactivator™ using the REST API, you will need:

• A valid admin username and password (so that a token can be generated and an authenticated
session can be established).

• Appropriate access permissions for the requested resource (controlled by admin profile)

Using curl, you may save the authentication information as a HTTP header to allow subsequent
requests to be accepted automatically.

authentication request

curl -H 'Content-Type: application/json' -XPOST -k https://<MSA IP or FQDN>/ubi-api-
rest/auth/token -d '{"username":"username", "password":"user password"}'

authentication response

{
 "token":
"eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiJuY3Jvb3QiLCJpYXQiOjE2NTUxOTQ3MzMsImx2bCI6IjEiLCJleHAi
OjE2NTUxOTgzMzN9.kVl5XuqbSnGI59k0dlHmhB9xmPsixS3X24yQ4oWD-S9GgcBWw7X-
DAb_S5oqwd0h3R64i_Custn8GeFt34Yzow", ①
 "message": "authenticated",
 "authenticated": "true",
 "userDetails": {
 "id": 1,
 "baseRole": {
 "id": 1,
 "name": "Super Administrateur"
 },
 "externalReference": "NCLG1",
 "login": "ncroot",
 "operator": {
 "id": 1,
 "abonnes": [],
 "baseUrl": null,
 "isPartner": false,
 "name": "UBIqube",
 "prefix": "NCL",
 "address": {
 "city": "",
 "country": "",
 "fax": "",
 "mail": "",
 "phone": "",
 "streetName1": "",
 "streetName2": "",
 "streetName3": "",

140

 "zipCode": ""
 },
 "customersCount": 0,
 "adminsCount": 0,
 "managersCount": 0,
 "externalReference": ""
 },
 "acteurId": 1,
 "address": {
 "city": "",
 "country": "",
 "fax": null,
 "mail": "ncroot@msactivator.com",
 "phone": "",
 "streetName1": "",
 "streetName2": "",
 "streetName3": "",
 "zipCode": ""
 },
 "delegationProfileId": 0,
 "userType": 2,
 "delegations": null,
 "delegationsPerCustomer": {},
 "netceloId": {
 "ubiID": "NCLG1",
 "thePrefix": "NCL",
 "id": 1,
 "customerPrefix": "NCL"
 },
 "isExternalAuth": false,
 "activationKey": "",
 "ccla": false,
 "isActive": true,
 "passwordUpdateDate": "",
 "attachedCustomerIds": null,
 "firstname": "",
 "attachedOperatorIds": null,
 "manageAllUsers": true,
 "name": "ncroot",
 "sort": "NAME",
 "ldapAuthentication": false,
 "delegationProfilePerCustomer": {}
 }
}

① auth TOKEN

Use the token from the auth response in the Authorization Bearer header to call the MSactivator™
REST API.

141

curl -H 'Accept: application/json' -H "Authorization: Bearer TOKEN" -XGET 'http://<MSA
IP or FQDN>/ubi-api-rest/user/customer-by-manager-id/1

142

Format
MSactivator™ API uses the JSON format.

143

Example API commands
For the full list of available commands, see the MSactivator™ API guide on your MSactivator™
instance: http://<MSA IP or FQDN>/swagger

User login
HTTP Request: /ubi-api-rest/auth/token

Method: POST

Parameter Name Type Description

username String User name

password String Password

Example:

{
 "username": "test",
 "password": "test1234567890"
}

Response:

{
 "token": "<TOKEN>", ①
 "message": "authenticated",
 "authenticated": "true",
 "userDetails": {
 "id": 18,

 ... ②

 "externalReference": "UBIG18",
 "login": "test",
 "firstname": "",
 "manageAllUsers": true,
 "name": "test",
 "sort": "NAME",
 "ldapAuthentication": false,
 "delegationProfilePerCustomer": {}
 }
}

① the authentication token to use in the HTTP header of the REST API calls

② the JSON response has been shortened for this documentation

144

http://<MSA

Ping an IP address from the CoreEngine
HTTP Request: /ubi-api-rest/device/ping/{$ip_address}

Method: GET

Parameter Name Type Description

ip_address String The IP address to ping

Example:

/ubi-api-rest/device/ping/127.0.0.1

Response:

{
 "status": "OK",
 "rawJSONResult": "{\"sms_status\":\"OK\",\"sms_code\":\"\",\"sms_message\":\"---
127.0.0.1 ping statistics ---\\n5 packets transmitted, 5 received, 0% packet loss,
time 3999ms\\nrtt min/avg/max/mdev = 0.031/0.036/0.043/0.006 ms\"}",
 "message": "--- 127.0.0.1 ping statistics ---\n5 packets transmitted, 5 received,
0% packet loss, time 3999ms\nrtt min/avg/max/mdev = 0.031/0.036/0.043/0.006 ms"
}

Call microservice functions
HTTP Request: /ubi-api-rest/ordercommand/execute/{device_id}/{command_name}

Method: POST

Parameter Name Type Description

device_id Long The database identifier of the
Managed Entity

command_name String One of CREATE, UPDATE,
DELETE

body String the payload with the
microservice parameters

Example:

/ubi-api-rest/ordercommand/execute/156/CREATE

{

145

 "simple_firewall": {
 "789": {
 "object_id": "789",
 "src_ip": "7.8.3.0",
 "src_mask": "255.255.255.0",
 "dst_ip": "8.8.3.0",
 "dst_mask": "255.255.255.0",
 "service": "http",
 "action": "deny"
 }
 }
}

Response:

{
 "commandId": 0,
 "status": "OK",
 "message": "access-list 789 extended deny object http 7.8.3.0 255.255.255.0
8.8.3.0 255.255.255.0 log\n"
}

Configuration variables
HTTP Request: /variables/{deviceId}/{name}

Method: GET

Parameter Name Type Description

deviceId Long Id of device (Number format)
has to be higher than 0,
Example = 3453

name String Name of the variable, Example
= var1

Configuration
HTTP Request: /system-admin/v1/msa_vars

Method: POST

Body:

[
 {
 "name": "string",

146

 "lastUpdate": "string",
 "comment": "string",
 "value": "string"
 }
]

Workflow
HTTP Request: orchestration/service/execute/{ubiqubeId}

Method: POST

Parameter Name Type Description

ubiqubeId String Id of the subtenant. A
combination of the tenant
prefix and the subtenant
database ID. Example UBI123.

serviceName String Relative path of the workflow

processName String Relative path of the process

Body:

the payload JSON contains the parameter to pass to the process thus depends on the variables of the
workflow

[
 {
 "name": "string",
 "lastUpdate": "string",
 "comment": "string",
 "value": "string"
 }
]

Example: call the process "Create Instance" of the worklflow "Helloworld"

This workflow is part of the MSActivator mini-lab and maintained in a github repository.

POST

/ubi-api-
rest/orchestration/service/execute/BLRA7?serviceName=Process/Tutorials/Helloworld/Hell
oworld&processName=Process/Helloworld/Process_create_instance

{"name":"jack"}

147

https://github.com/openmsa/Workflows/tree/master/Tutorials/Helloworld

Dashboard design
The MSactivator™ integrate both Elasticsearch and Kibana to provide log analysis and event
visualization.

148

Overview
To visualize the events stored in Elasticsearch, you can use some of the dashaboard that are
packaged in the MSactivator™, but you can also design your own dashboards.

event processing flow in elasticsearch and kibana

149

Create a dashboard
To create a dashboard, you can either reuse on of the existing visualization provided in the
MSactivator™ or you can create your own.

Let’s create a simple visualization to show in a histogram the number of events collected and
indexed in ubilogs-* in Elasticsearch.

Cerebro on http://MSA_IP:9000 showing ubilogs indexes

Create a visualization
Open Kibana on http://MSA_IP:5601 and select "Visualize" on the left menu.

visualizations available

Click on "+ Create new visualization", select "Vertical Bar" and choose ubilogs-* as the source.

In the configuration panel, select "X-Axis" as the bucket type and "Date Histogram" for the
aggregation. The field for aggregation should be automatically set to "Date".

Click on the button "Apply Change" on the top right of the panel.

150

http://MSA_IP:9000
http://MSA_IP:5601

new visualization created

Save the visualization and browse to the dashboards

list of dashboards

Create a dashboard
Click on "+ Create new dashboard" to create a new dashboard and click "Add" to list the
visualizations and select yours.

new visualization added

151

On the same dashboard, add another predefined visualization named "timeFilter". This will add a
simple time range selector widget to your dashboard.

Set the subtenant filter

The dashboard is meant to be deployed for a subtenant by the workflow "Deploy Dashboard", the
workflow will inject the subtenant ID in the dashboard. For this to happen you have to add a filter
"customer_id:0" to your dashboard.

dummy filter for the dashboard template

Save the dashboard

save the dashboard with "Store time with dashboard"

152

Update the reference and name of the dashboard

By default Kibana saves the dashboard with a UID to identify it but here is how to update your
dashbaord and give it a human readable name that you can use in the deployment workflow.

Step 1: export the dashboard

From Kibana management, go to "Saved Objects" and select your dashboard, export is as an ndjson
file. Leave the option "Include related object" off.

Step 2: edit the ndjson file

With your favorite text editor, edit the file and update the properties "title" and "id". Both
properties should be set to the same value starting with "template_".

Example

"id":"template_my_dashboard"
"title":"template_my_dashboard"

Step 3: import the dashboard

Step 4: deploy the dashboard with the selected name

On the MSactivator™ UI, select your subtenant, make sure the workflow "Deploy Dashboard" is
attached and click "+ Create Dashboard".

Set the template name to name you used in the ndjson file and provide a name of your choice for
the Dashboard.

deploy the dashboard

Execute the process and use the URL provided in the process execution status to open your custom
dashboard.

 you need to edit the URL to use the proper IP address of your MSactivator™

dashboard deployed in Kibana

153

154

DevOps best practice guide
The MSactivator™ is a platform for designing and developing network and security automation
applications.

The community applications (Microservices, Workflows and Adaptors) are available on GitHub

These applications are located in dedicated GitHub repositories and can be forked and/or cloned
from GitHub to your MSactivator™ development platform.

This page explains in detail how to do this and the associated best practices.

155

https://github.com/openmsa

How to install the microservices and the
workflows

Overview
As a DevOps engineer, the first step to getting familiar with the MSactivator™ community code is to:

• Retrieve the code from GitHub

• Install the code on the OpenMSA platform

• Utilize the microservices and the workflows

156

How to design/develop and contribute to the
community
As a microservice or workflow designer you’ll have the opportunity to contribute to the community
source code.

The easiest way is to utilize MSactivator™ as the design tool. This is the most typical and
recommended method.

1. Fork the OpenMSA repository into your GitHub account.

2. Clone the repository from your personal GitHub account to your OpenMSA DevOps platform.

3. Utilize your favorite browser to use/design/test/update Workflows and Microservices.

4. Push the changes to your GitHub account.

5. Contribute by submitting pull requests to the OpenMSA community.

6. It is possible to use your favorite IDE to ease development of Workflow tasks or Device Adaptors
that are in PHP language.

157

This procedure adds a set of push/pull steps to sync the code from your PC with your MSactivator™
DevOps platform.

Design or edit code on your PC and IDE, such as Eclipse or a simple editor with PHP syntax
highlighting, then push to the MSactivator™ platform to use it live.

Default installation for the libraries.
When you install the MSactivator™ with the quickstart a selected list of libraries (microservices,
workflows and adapters) are installed by default.

The installation is done by the script install_libraries.sh installed in the docker container
msa_dev.

Standard libraries installation
Next, we’ll see where the adapters, microservices and workflows are installed, and some of the
specific facts about this installation that you need to be aware of when installing your own
libraries.

Adapters

The Github repository for the adapters is located under /opt/devops/OpenMSA_Adapters. By default,
the git remote is

git remote -v
origin https://github.com/openmsa/Adapters.git (fetch)
origin https://github.com/openmsa/Adapters.git (push)

158

../user-guide/quickstart.pdf#step2
../admin-guide/architecture_overview.pdf#containers_description

and the branch points to master

git branch
* master

If you are planning to add your adapter or update an existing one, you need to add a remote to
point to your own fork of the Github repository and create a dedicated branch.

When you are ready with you development, you can commit and push your changes to your remote
with the new remote and use the branch as the upstream branch. You will then be able to create a
pull request on OpenMSA repository and start contributing to the community code.

Learning about creating and installing new adapters is addressed in the adapter development
documentation.

Microservices

The Github repository for the microservices is located under /opt/fmc_repository/OpenMSA_MS.

In a similar way to the adapters above, the remote is set to https://github.com/openmsa/
Microservices.git and the default branch is master.

You can add your own remote and push your working branch to your fork.

The installation of the microservices is done under /opt/fmc_repository/CommandDefinition/ and is
based on symbolic links to the git repo.

ls -la | grep LINUX
lrwxrwxrwx 1 ncuser ncuser 25 Sep 24 09:02 .meta_LINUX -> ../OpenMSA_MS/.meta_LINUX
① ②
lrwxrwxrwx 1 ncuser ncuser 19 Sep 24 09:02 LINUX -> ../OpenMSA_MS/LINUX ②

① A symlink as to be created to the meta file

② you need to set ncuser as the user and group for all the files under
/opt/fmc_repository/CommandDefinition/ otherwise the microservices won’t be listed or editable
on the UI.

Workflows

The Github repository for the workflows is located under /opt/fmc_repository/OpenMSA_MS.

In a similar way to the microservices above, the remote is set to https://github.com/openmsa/
Workflows.git and the default branch is master.

The installation of the microservices is done under /opt/fmc_repository/Process/ and is based on
symbolic links to the git repo.

ls -la | grep Topology

159

https://github.com/openmsa/Microservices.git
https://github.com/openmsa/Microservices.git
https://github.com/openmsa/Workflows.git
https://github.com/openmsa/Workflows.git

lrwxrwxrwx 1 ncuser ncuser 28 Sep 24 09:02 .meta_Topology ->
../OpenMSA_WF/.meta_Topology
lrwxrwxrwx 1 ncuser ncuser 22 Sep 24 09:02 Topology -> ../OpenMSA_WF/Topology

when creating the symlinks to the workflow, you need to make sure to keep the
consistency with the paths defined in the workflow definition file.

160

	MSactivator™ Developer Guide
	Table of Contents
	Developer Portal
	BPM Editor
	Overview
	BPM design
	BPMN elements
	Parallel gateway (AND)
	Decision gateway (XOR)

	Design a BPM process
	Create a new BPM
	Connecting workflows and processes
	Execution flow control
	Execution breakpoint
	Execution tracking
	BPM instances management

	Getting Started Developing BPM
	Uses of BPMN
	Create or Edit a BPM
	The Helloworld BPM

	Workflow Editor
	Overview
	Workflow overview
	The lifecycle of a workflow
	How to persist the state of a workflow instance

	Editor Overview
	Workflow information
	Workflow variables
	Workflow processes

	Logging and troubleshooting
	Workflow Variables
	Overview
	Default settings
	Advanced settings
	Variable arrays

	Getting Started Developing Workflows in PHP
	Overview
	The "Helloworld" Workflow

	Getting Started Developing Workflows in Python
	Overview
	The "Hello world" Workflow

	Python SDK
	Overview
	Code samples
	Microservice functions
	How to create you libraries of functions
	How to extend the SDK
	Miscellaneous

	PHP SDK
	Overview
	Where to find the source code of the SDK?
	Code samples
	Microservice functions
	Useful functions

	Microservice Editor
	Microservice editor
	Overview
	Information
	Variables
	Functions
	Constraint

	XML Microservice Editor
	Overview

	JSON Microservice Editor
	Overview

	CLI Microservice Editor
	CLI microservice implementation
	Import function: tips and examples

	Microservice Variables
	Overview
	Default settings
	Advanced settings
	Variable arrays

	Microservice Template with PHP Smarty
	Smarty templates
	Parameter substitution in microservice

	Getting Started with Microservices Design
	Overview
	Lab setup
	Microservice design
	Going further

	Microservice Order Command REST API
	Type of Execution
	Executing Commands

	Microservice Order Stack Management API
	Overview
	API description

	Adapter Development
	Overview
	How to find, install, activate the adapters
	REST Generic adapter
	How to create a new vendor based on an existing adapter
	Overview
	How to do it

	Adapter SDK
	Custom commands
	Status polling
	Asset management
	Configuration management
	Connectivity to the Devices
	Implementation of ‘Update Configuration’
	Managed entity activation (initial provisioning)
	Configuration backup/restore
	Connectivity fallback mechanism
	Microservice implementation

	The MSactivator™ CoreEngine API
	Operation status feedback

	Import / Export Librairies
	Overview
	Local libraries repositories overview
	Configuration
	Prerequisites
	Add a repository

	How it works
	Git repository management rules

	REST API
	Enabling REST API support
	Authentication
	Format
	Example API commands
	User login
	Ping an IP address from the CoreEngine
	Call microservice functions
	Configuration variables
	Configuration
	Workflow
	Example: call the process "Create Instance" of the worklflow "Helloworld"

	Dashboard design
	Overview
	Create a dashboard
	Create a visualization
	Create a dashboard
	Set the subtenant filter
	Save the dashboard
	Update the reference and name of the dashboard

	DevOps best practice guide
	How to install the microservices and the workflows
	Overview

	How to design/develop and contribute to the community
	Default installation for the libraries.
	Standard libraries installation
	Adapters
	Microservices
	Workflows

